Old Dominion University

ODU Digital Commons

Engineering Management & Systems Engineering

Engineering Management & Systems Engineerin
Theses & Dissertations & & & Y g g

Winter 1998

An Alternative Method for Determining Adjusted
Function Points as the Basis for Software Cost
Estimating

William Alexander Eldred
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse etds

0 Part of the Computer Sciences Commons, and the Systems Engineering Commons

Recommended Citation

Eldred, William A.. "An Alternative Method for Determining Adjusted Function Points as the Basis for Software Cost Estimating”
(1998). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/2bxy-7j63
https://digitalcommons.odu.edu/emse_etds/72

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has
been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU

Digital Commons. For more information, please contact digitalcommons@odu.edu.

www.manharaa.com

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/72?utm_source=digitalcommons.odu.edu%2Femse_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN ALTERNATIVE METHOD FOR DETERMINING
ADJUSTED FUNCTION POINTS AS THE BASIS
FOR SOFTWARE COST ESTIMATING

by

William Alexander Eldred
B.S. June 1962, United States Naval Academy
M.S. June 1972, Massachusetts Institute of Technology
Ocean E. June 1972, Massachusetts Institute of Technology

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSOPHY
ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
December 1998

Approved by:

Resit- Unal (Directorl)

Derj;a Al J acbbé (lvfembe;)

Abel A. Fernandez (Mgmber) |,

e T —
C. Michael Overstreet (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT
AN ALTERNATIVE METHOD FOR DETERMINING
ADJUSTED FUNCTION POINTS AS THE BASIS
FOR SOFTWARE COST ESTIMATING
William Alexander Eldred

Old Dominion University, 1998
Director: Dr. Resit Unal

As software costs become an increasingly higher percentage of total
computer system costs, it becomes increasingly more important for
software development managers to have the ability to predict
development costs with reasonable accuracy early in the software
development cycle. Software development cost estimates are based in
large measure on software size. Function points are considered by many
to be a de facto industry standard as a size metric. The function points
technique, unlike lines-of-code, can be applied early in the software
development cycle and is language independent. Critics claim that the
function point “value adjustment factor,” which purports to capture the
effects of software complexity considerations in the final function point
count, is inadequate as currently determined. The research described
herein develops a new approach, using a less restrictive multiplicative
model instead of the existing additive model, for calculating the value

adjustment factor. The proposed approach was implemented and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluated using data from 301 software development projects. However,
no improvement in model performance was realized, at least using the
limited data available, which were for the most part representative of only
one software application domain. Therefore, no conclusion can be drawn
from the results of this effort as to whether the proposed multiplicative
model is an improvement over the additive model for software
development projects in general. The results do, however, focus
attention upon two areas which merit further investigation: the
performance which would be realized in applying the proposed new
model to data more representative of a cross-section of modern software;
and the question of whether the function point general system
characteristics (upon which the value adjustment factor is based), as
currently defined, adequately capture the effects of potential system cost
drivers. This research makes the following contributions: an alternative
approach for capturing the effects of Function Point general system
characteristics on development effort and cost has been demonstrated;
there is an indication that the general system characteristics are in need
of a thorough review for appropriateness and adequacy; and the need for
better dialogue between various elements of the software sizing and cost

estimating community is identified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife Judy, without whose love, encouragement, and patience the
successful completion of this undertaking would not have been possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

[wish to express my sincere thanks to those individuals who have
contributed in some way to the successful completion of this effort.
Foremost among these is Dr. Resit Unal, whose interest, encouragement,
timely suggestions, and sense of humor provided the support I needed to
see my work through to completion. I also wish to thank the other
members of my committee, Dr. Derya Jacobs, Dr. Abel Fernandez, and
Dr. Mike Overstreet, for their time, interest, feedback, and suggestions.

I would also like to thank those practitioners and researchers in the
software metrics and cost estimating community who contributed, in
ways large and small, to my ability to define the research issue and
obtain the necessary information to proceed. These include: Bryan
Piggott of PRC Inc.; Ray Madachy of Litton Data Systems and also part of
Barry Boehm’s team at the University of Southern California; Rob
Donnellan; Denis St-Pierre and Jean-Marc Desharnais of the Software
Engineering Management Research Laboratory at the University of
Quebec at Montreal; Paula Jamieson, Andrew Sanchez, and Gordon
Lundquist of the International Function Point Users Group (IFPUG), as

well as the IFPUG staff in Westerville, Ohio; Chris Kemerer of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Pittsburgh; Dick Stutzke of Science Applications
International Corporation; Capers Jones of Software Productivity
Research, Inc.; and Dillard Boland of Computer Sciences Corporation. I
would like to thank Jim Duff for his interest and for his advice regarding
the statistical aspects of my work. Thanks are due also to the PRC Inc.
Technical Library staff in McLean, Virginia - Barbara Kopp, Alice Hill-
Murray, and Pat Garman - for their persistence in helping me locate
needed materials. I would also like to thank my colleague and co-
worker, Dr. J. Terry Ray of PRC Inc., for sharing the insight he gained as
he pursued a similar goal.

I owe a special debt of gratitude to the late Richard A. Bihr, whose
encouragement and own unending desire to learn helped rekindle my
interest in and enthusiasm for the attainment of academic objectives.

Finally, I would like to express my thanks to my daughter, Alina
Dawson Eldred, whose own success in the pursuit of academic
excellence set a superb example and helped her Dad not lose sight of his

goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
Page
LIST OF TABLES.........o o eeiieeccerieeiioranenasessertestetssssetssssssnnsessssnssassssesnsens X
Chapter
L INTRODUCTIONouiinieimneerciecreseencisroesescsnressscesessenensoseens 1
Backgroundccoieeiiiiieiiiiiiiniieiirc e e 1
| 2401 g 070 T SRR 12
II. LITERATURE REVIEWccccuitirmimrirreneirecnrecrecneerenceneens 14
Survey of Literature on the Problem.ccccueeeeneee. 14
The Introduction of the Function Points Approach 14
The Introduction of COCOMOcoeieueernienienrrncennnenenes 16
Validation of Function Points
as a Software Size MetriC....c.cocvvereiererinniniereieinnennnnas 17
Generalizability of Function Points......c..cccecieienienennnnnne. 20
Software Complexity Considerations
in Function Point Analysiscccceevieeiveerencenieneeecanne. 21
Existing Techniques and Models for Deriving
Effort Estimates from Function Point Counts............ 24
(0167667 (015 1 SRS 25
Summary of the Literature Reviewc.cccvuveveeninnennnnnn. 27
. RESEARCH ISSUEScceiuiuiimiiniciericecnreiesersenennenns 29
The Problemcccceeiimiiieiiieiecieriticeereeeeneeeneenees 29
What Is Not Being Doneccccoviieieiiniiiiiinncciiencncenenenne. 32
A Proposed Alternate Approachc.cceeeeveceninnenniennnnnene. 33
The Research QUESHOM ...c.ceeieieruiecreieercenceatecerecssasennes 43
Expected FINAINGS....c.covmvinmiimiiiiiiniiiiiieiticeeceneeneaeee 43
070 4 1a 9101515 Te) o &= J0NNUN N 44
IV. RESEARCH METHODOLOGY ...ccccoivuiirmmcinrnnenncnncnenennnnne. 49
Development of a Proposed New Model
for Determining Adjusted Function Points................. 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Current Research Effort with Respect to
Software Cost Estimating Theory and Practice 54
Determining and Applying Function Point
Multipliers for the Revised Model..............cccaueeeeennnien. 62
Data Collection and Methodologyc.ccuuueiienrnrenrnnnnnnns 64
V. RESULTS AND CONCLUSIONS......cccoiviimitieimmeccnrerceiecnene. 70
RESUILS.....ieieieiieiiereiccc et imcr e cncrnriecse s e naneens 70
Discussion of ReSUltScccovuiiienimiinieieiiniiiicnierrecenanee. 74
[670] ¢ 103 151370 ¢ 1= SN OO 77
Limitations of the Research........cccccevieimiiiivininininnnn. 83
Avenues for Further Research........cccccoevrvviininncninnnnnee. 84
REFERENCE LISTruiieiiieereacrecenreteetieeiessessenssnctmmernsssrssssnssssssnns 88
APPENDICES
A. COMPARISON OF COCOMO II COST DRIVER
PROVISIONAL VALUES WITH CORRESPONDING
VALUES OBTAINED USING PROPOSED
EXPONENTIAL FORMcouuiiiimimecrenrencnernnnncensesenmmeneees 92
B. PROJECT DATA FOR 301 SOFTWARE
DEVELOPMENT PROJECTS......ccccoeeerurimmrumnisenrecennieeiiens 98
C. PROJECT DATA USED IN REGRESSION
ANALYSIS TO DETERMINE MULTIPLIERS (nj) 106
D. DATA FOR 91 PROJECTS USED TO TEST
PROPOSED APPROACHccccoeiienemecceninrenrcrencecneceenenes 113
A4 ¢ . U 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page
1. Function Point General System Characteristics......c.c.cccccvereeueeennnen. 35
2. COCOMO II COSt DIIVETS.....c.ceeeuriiiiirisrreenrenriiinrnrerecenerereieecseeceesenss 37
3. Relationship Between Function Point GSCs

and COCOMO II COSt DIIVETSccceuuuvuurenenrrenienierencecnnimionnianecnenness 41
4. Comparison of COCOMO II Cost Driver Provisional Values

with Corresponding Values Using Proposed Exponential Form........ S1
5. Results of Stepwise Regression.......ccceueuerreereenirmereeeereeneeriiincinececese 71
6. Proposed Function Point Multipliers (22;)ccceuueeemnveninenneennncnnne. 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Background

As late as the early 1970s, software costs accounted for less than
40 percent of total computer system costs, and hardware was the
dominant cost factor. Since that time, hardware costs have steadily
decreased, while the costs of software development and maintenance
have increased significantly. The result is that software costs now
account for about 90 percent of the total system cost to the end user over
the life cycle of the software (Wellman 1992, 30). This has focused
substantial attention on efforts to predict and control software
development costs.

Reasonably accurate early estimation of software development
costs is important to software managers for several reasons. These
include: the need for orderly allocation of personnel and other resources;
the making of "go/no-go" decisions, based on cost, of whether or not to
proceed with a software development effort; and, in bidding on a contract
or quoting a price to an outside customer, the need to avoid substantial

cost overruns or underruns. Overestimating can result in failure to win

Style specifications follow the Old Dominion University Dissertation
Guide and A Manual for Writers of Term Papers, Theses, and
Dissertations, by Kate L. Turabian, where applicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the contract in the first place, while underestimating, depending on the
type of contract, can result in a "bottom line" loss to the software
development organization or a very unhappy customer when asked to
pay a substantially higher price than first quoted. Software users
(customers) have shown an increasing unwillingness to accept schedule
slippage and cost overruns unless the developers bear an increasing
share of the resultant penalties (Srinivasan and Martin 1994, 70).

Clearly, then, the financial success of a software development
project depends, in large measure, on the ability of the software manager
to estimate the cost of software development reasonably accurately, prior
to the start of the project (Navlakha 1990, 255). As late as 1996,
Garmus and Herron state that "unfortunately, a method of doing so
[providing timely and accurate project estimates] early in a project has
not been adequately addressed and standardized within the software
industry” (Garmus and Herron 1996b, 57).

Early software cost estimating efforts were based principally on
expert judgment or, where it was available, historical information for
software development projects similar, or analogous, to the development
project being estimated. Such historical-experiential models were not
particularly reliable, as their accuracy depended on the experience of the

experts with similar projects or the currency and accuracy of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

historical data being used as the basis for the estimate and the degree to
which the project being estimated had features in common with those
from which the historical data had been gathered.

In the 1970s a number of algorithmic software cost estimating
models began to emerge. These models, which generally used
mathematical algorithms, were regarded by many as true models,
whereas the earlier (historical-experiential) approaches were considered
more as methods (Wellman 1992, 36). Conte, Dunsmore, and Shen
(1986, 279-330) subdivided these into statistically based methods,
theoretically based models, and composite models, providing a
discussion and examples of each. They described composite models as
incorporating "a combination of analytic equations, statistical data
fitting, and expert judgment” (300).

Probably the best known of the composite algorithmic models was
Barry Boehm's Constructive Cost Model, or COCOMO, which Boehm
introduced in 1981 (Boehm 1981). Boehm presented three levels of
COCOMO: basic, intermediate, and detailed. Basic COCOMO was
represented by a formulation typical of the algorithmic models (Wellman
1992, 36), specifically:

MM =aLb (1.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where MM is manmonths of effort, and L is lines of code. Intermediate
COCOMO introduced the effect of 15 cost drivers (in addition to the
primary cost driver, size, defined by lines of code). Detailed COCOMO
provided for a breakdown of the estimate by phase of the software
development cycle.

As did most of the algorithmic models developed through the mid-
1980s, COCOMO used as the measure of a software project’s size the
number of delivered source instructions (lines of code), or DSI, expressed
as KDSI (K = thousand). (Other models referred to this measure as
source lines of code (SLOC) or KSLOC.)

The use of lines of code as a measure of software size presented
two significant problems, especially for use of the models early in the
software development cycle. At that point in the cycle, a reasonably
accurate prediction of project cost would be of value to a software
development manager in quoting cost and schedule estimates to a
customer or in planning the allocation of resources. The first of these
problems is illustrated by Jones in his discussion of what he calls the
"paradox of reversed productivity for high level languages" (Jones 1991,
53). This phenomenon manifests itself as follows: as the computing
power of programming languages improves (i.e., on the average, the

amount of computational instruction contained a line of code increases),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

real economic software productivity should improve, even though there
will probably be some increase in the effort to produce one line of code in
a more sophisticated language. However, any software metric which is
based on lines of code will show an increase in the effort (cost) per line of
code, making it appear that productivity is worse, not better. Since a
single line of code, on the average, could have a different computational
value depending on the level of the language, source lines of code does
not represent the same (or even substantially the same) value for all
software development efforts. Thus, SLOC broke down as a usable size
metric.

The second problem with using lines of code as a size metric was
that, by the time the number of SLOC was known with a reasonable
degree of accuracy, a commitment to a project had already been made
and development was well underway. Indeed, Mukhopadhyay and Kekre
(1992, 915) maintain that "LOC is not known with reasonable degree of
certainty until after programming is completed.” While this was useful
for assessing productivity, i.e., determining what a project should have
cost relative to what it actually cost, models based on lines of code had
little or no value in a prediction role for early cost estimating to support
go/no-go decisions, price quotes to a prospective customer, resource

allocation planning, and the like.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At about the time that Boehm was developing COCOMO, Allan
Albrecht (1979) of IBM was introducing a measurement technique which
he called "function points” that he and some colleagues had developed at
IBM. According to Gaffney (1996, 2), who, following the introduction of
function points, collaborated with Albrecht on at least one paper
concerning the validity of function points, the function points approach
was created "to improve the communication between IBM developers of
custom commercial software and their customers concerning the
requirements for prospective software systems." Gaffney goes on to say
that "A key problem in software development is how to state
requirements in such a manner that both software system providers and
acquirers can understand them. Albrecht devised the function point
measure to enable his customers to state their requirements so that they
could be readily translated into a cost estimate by the IBM development
team" (1996, 2-3). Albrecht himself stated as an objective of the work
which resulted in the development of the function point approach "to
develop a relative measure of function value delivered to the user that
was independent of the particular technology or approach used"
(Albrecht 1979, 84). In the presentation in which he introduced function
points, Albrecht appeared to be focusing on the measurement of

productivity as much as software project cost estimation. Indeed, it was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

titled "Measuring Application Development Productivity” (Albrecht 1979).
Nonetheless, it had resulted in introducing a software size metric that
was independent of the programming language and which could be
determined at the point in the software development cycle at which the
system requirements were fully defined, or specified.

In the research that culminated in the establishment of the
function points approach, Albrecht and his associates found that the
basic value of a software application's function "was consistently
proportional to a weighted count of the number of external user inputs,
outputs, inquiries and master files.”" Albrecht weighted the counts thus
obtained by numbers "designed to reflect the function value to the
customer. The weights used were determined by debate and trial.”
Advising that the weights as shown below had given them "good results”
(1979, 85), Albrecht presented the following as the initial set of
calculations:

Number of Inputs x 4

Number of Outputs x 5

Number of Inquiries x 4

Number of Master Files x 10 (1979, 85)

The total so obtained was then adjusted for the effect of ten "complexity”

factors. This complexity adjustment could result in an increase or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decrease in the unadjusted total of as much as 25 percent. The final
result was (in Albrecht's words) "a dimensionless number defined in
function points which we have found to be an effective relative measure
of function value delivered to our customer” (1979, 85).

In 1984 Albrecht issued a major revision to the function points
counting algorithm presented above (Jones 1991, 60-64) which resulted
in its being more complicated (and presumably more accurate). A fifth
calculation was added (Number of External Files Referenced), and the
number of weighting factors was expanded to allow for three different
weights which can be applied to each of the five types of count. Which of
the three different weights to use depends on the complexity (low,
average, high) of the individual entity being addressed. The ten original
system complexity factors were expanded to fourteen. These are now
referred to as "general system characteristics" (Garmus and Herron
1996a, 81-90). The values of the 14 general system characteristics are
used to determine a “value adjustment factor,” which, when applied to
the unadjusted function point total, can result in an increase or decrease
of as much as 35 percent.

Following its introduction, the function points approach began to
increase in use and popularity. In 1983, the association of IBM's

commercial clients, GUIDE, established a working group on function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

points (Jones 1991, 81). By 1986, several hundred companies, many but
not all of them clients of IBM, were using the function points approach.
In 1986, the International Function Point Users Group (IFPUG) was
formed as a nonprofit organization devoted exclusively to the utilization
of function points and the dissemination of data derived from function
point studies. IFPUG has evolved into a major association concerned
with all aspects of software measurement. According to Jones (1991,
81), "the IFPUG counting practices committee has become a de facto
standards group for noermalizing the way function points are counted,
and it has done much to resolve the variations in terminology and even
the misconceptions that naturally occur when a metric gains wide

international use.” IFPUG publishes a Function Point Counting Practices

Manual to provide detailed counting rules, ensure that the counting
rules are updated to encompass new programming techniques and
languages, and thereby to ensure standardized application of the
function points approach. The current version of the Manual is the
fourth (Version 4.0). IFPUG also oversees the training and certification of
analysts in the counting of function points.

Kemerer (1987) and others performed validation studies of the
function points approach and generally found correlation with actual

effort better than with other software estimating techniques. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

function points approach, however, has not been without its critics.
Many (Symons 1988, 10; Keyes 1992, 44; Matson, Barrett, and
Mellichamp 1994, 276; Srinivasan and Martin 1994, 73; Whitmire 1995,
43) felt, since the function points approach was developed for, and using
data from, management information (or "business") systems, that it was
inadequate for use as a size metric for software development in areas
such as scientific or technical systems, communications software, "real-
time" systems, computer operating systems, graphical user interfaces
(GUIs), and object oriented programming. The primary criticism in the
literature was that the function points approach did not adequately
capture the complexity of software development in these areas. This
concern led to the development of variants of the function points
approach. These were introduced under such names as feature points,
function points Mark II, 3D function points, and object points. The basic
function points approach continues, however, to enjoy widespread use
and the advantages of a formalized user group.

Additionally, it is important to realize that the function points
approach has been evolving since its introduction. As mentioned earlier,
even before the establishment of IFPUG in 1986, Albrecht had made
some improvements in his approach (Jones 1991, 60-64). Since IFPUG

had released its fourth revision to the Function Point Counting Practices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Manual within ten years of the organization's founding, it is likely that
the changes to the counting practices (or "rules") reflected in succeeding
revisions were made, at least in part, in response to the criticism. Many
argue now that the function points approach indeed does have
applicability and produces valid results in the non-business areas cited
earlier (Bernstein and Lubashevsky 1995, 17; Garmus and Herron
1996a, Chapter 11). In reviewing the literature it appears that, though
some shortcomings to the method may remain, the function points
approach currently represents the available methodology closest to an
industry standard for software size estimation. As noted earlier, it is
language-independent, and a reasonably accurate function point count
can be determined “early on,” prior to beginning actual software
development.

As the function points approach was evolving to its current status
within the industry, research was continuing which built upon the
original COCOMO model. In 1995, Boehm and researchers at the
University of Southern California introduced an updated version of
COCOMO, designated COCOMO II (Boehm et al. 1995). COCOMO II, like
the original version, is intended to be publicly available. There is an
Early Design variant of the model, specifically intended for use as a

development effort predictor. Although it remains principally a lines-of-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

code based model, COCOMO II does permit the acceptance of function
points as a software size metric input.
Purpose

The purpose of this research effort is to develop and evaluate an
alternative to the current approach to determining the function point
“value adjustment factor.” This factor is applied to the unadjusted
function point count for a software development project in order to arrive
at the adjusted, or final, function point count. The value adjustment
factor aggregates the values of the 14 general system characteristics, and
it is then used to “adjust” the unadjusted function point count to
produce the adjusted count. It therefore can significantly affect the value
of the adjusted function point count. As calculated using the current
approach, the value adjustment factor can result in an increase or
decrease of as much as 35 percent in converting the unadjusted function
point count to the adjusted function point count. Consequently,
research which seeks a better way of determining the value of the
function point value adjustment factor (in terms of producing an
adjusted function point count which is more closely correlated with
development effort and therefore cost) is highly desirable if function
points are to be utilized as the basis for predicting or estimating

development cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

The current approach has received substantial criticism, with
some maintaining that little value is added by making the adjustment to
the raw, or unadjusted, function point value (Kemerer 1987, 428;
Gaffney 1996, 7; Boehm 1997, 25-26; Finnie, Wittig, and Desharnais
1997, 43-44; Jamieson 1997). A review of the literature indicates that
the treatment of software complexity considerations and other “effort
multipliers” by the COCOMO II model is of a form different from that
used to reflect similar considerations in the value adjustment factor, and
consequently the adjusted function point count, based on the values of
the 14 general system characteristics. As a result, a different approach
appears to be needed for determining the function point value
adjustment factor. This research attempts to eliminate constraints of the
current method (which are the basis for some of the current criticism)
and develop an alternative approach to produce adjusted function point
values which will be more closely correlated with development effort and
cost than is currently the case. The objective is to improve the use of
function points as the basis for predicting or estimating development
costs and to contribute to the literature on the use of function points in

software cost estimating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

CHAPTER 11

LITERATURE REVIEW

Survey of Literature on the Problem

The volume of literature which exists on software metrics, and in
particular on that aspect of software metrics dealing with size, effort and
cost estimation, is quite large and growing. The discussion herein will
deal with the subset of that volume of literature, relevant to the problem
stated above, which addresses: the introduction of the original COCOMO
as a cost estimating approach and of function points as a software size
metric alternative to lines of code; the debate and ultimate acceptance by
a substantial portion of the community of the function points approach
as a de facto industry standard for measuring software size; the
discussion of the degree of internal software complexity reflected in a
function point count plus how complexity is taken into account in
estimating effort from function points; the general nature of estimation
models which base their estimates on function points; and, finally, the
introduction of COCOMO Version 2.0 (COCOMO II).
The Introduction of the Function Points Approach

Allan Albrecht introduced the function points approach in a paper
he presented at a symposium in October, 1979, in Monterey, California.

The main focus of Albrecht's paper was on software development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

productivity and how to measure and then compare productivity among
development projects. In the paper he states:

To measure productivity we had to define and measure a

product and a cost. The product that was analyzed was

function value delivered. The number of inputs, inquiries,

outputs, and master files delivered were counted, weighted,

summed, and adjusted for complexity for each project. The

objective was to develop a relative measure of function value

delivered to the user that was independent of the particular

technology or approach used. (Albrecht 1979, 84)
He then presents the weighting values for each of the four counts, as
discussed earlier herein, advising that the weights indicated had given
them "good results.”" He follows that with a discussion of the manner in
which above or below average complexity was addressed: "If the inputs,
outputs, or files are extra complicated, we add 5%. Complex internal
processing can add another 5%. On-line functions and performance are
addressed in other questions” (85). The final outcome was that the total
count could vary by as much as plus or minus 25 percent from its
unadjusted value when such adjustments for complexity were made.
The resulting "dimensionless number defined in function points" was
found by Albrecht to be "an effective relative measure of function value
delivered to our customer” (85).

For a measure of cost, Albrecht used work-hours (alternatively

described in the literature as manhours or person-hours). He cautions

that it was important to include the whole software development process,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

including the design phase, in the measurement in order to draw
meaningful conclusions.
The Introduction of COCOMO

In 1981, Barry Boehm published his book titled Software

Engineering Economics, which can appropriately be described as a

"landmark" work in the field of software cost estimating. In it he
discusses his motivation for publishing the book, provides a detailed
discussion of the economic aspects of software engineering, discusses the
underlying theory behind development of the model, and, of course,
introduces the three levels of the COCOMO model as described earlier.
He then discusses application of the COCOMO model in managing
software development.

Since its introduction, COCOMO has become probably the best
known of the lines-of-code based cost estimating metrics. However,
Boehm is quite frank about its limitations. He devotes a whole chapter
to "Factors Not Included in COCOMO." Factors excluded from the
original COCOMO Model include the type of application, the level of the
programming language, complexity, and others. In each case, Boehm
explains the rationale for not including a given factor. It is, however,
likely that the significance of at least some of the excluded factors is

greater now than it was in 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Validation of Function Points as a Software Size Metric

In a paper published in November of 1983, Albrecht and Gaffney
describe their work which had as an objective the validation of the
function points approach by examining the correlation between function
points and SLOC as well as between function points and development
effort. In their words:

The thesis of this work is that the amount of function to be

provided by the application (program) can be estimated from

an itemization of the major components of data to be used or

provided by it [this alludes to the function point calculations

discussed earlier]. Furthermore, this estimate of function

should be correlated to both the amount of "SLOC" to be

developed and the development effort needed. (Albrecht and

Gaffney 983, 639)
They point out the advantages of the function points approach in that it
can provide a measure of software size relatively early in the development
cycle (based on information available from dialogue with the user and
from the statement of basic requirements for the software) and that the
resulting function point count relates to user requirements in a way that
is more easily understood by the user than is SLOC.

Based on their work, Albrecht and Gaffney conclude that "at least
for the applications analyzed, both the development work-hours and
application size in 'SLOC' are strong functions of 'function points'...

(644)." They observe that "it appears that basing applications

development effort on the amount of function to be provided by an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

application rather than an estimate of 'SLOC' may be superior” (644).
However, they suggest that, until a sufficient supporting base of
productivity data could be developed to support such direct estimating, a
"two-step” process could be adopted which would use function points to
estimate, early in the development cycle, the SLOC to be produced. The
work effort would then be estimated from the estimated SLOC.

In 1987, Kemerer conducted an empirical validation of four
algorithmic models used in software cost estimation. The validation was
accomplished using simple linear regression analysis and was based on
both correlation of the models' output with actual effort expended and
the magnitude of the relative error (MRE) between the model outputs and
actual effort expended. Included in these were COCOMO and function
points. For function points, Kemerer used models previously developed
by Albrecht to predict man-months from function points as well as to
predict SLOC from function points and man-months from SLOC. In his
conclusions, Kemerer states that "Albrecht's model for estimating man-
months of effort from Function Points has been validated on an
independent data set." He advises that the results of his analysis "seem
to validate Albrecht's claims that Function Points do correlate well with

eventual SLOC" (1987, 424-425).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

In 1990, Low and Jeffery published the results of an empirical
research project into the consistency and limitations of function points
as an a priori measure of system size compared to the traditional lines of
code measure (Low and Jeffery 1990). Based on their analysis, they
concluded that "function point counts appear to be a more consistent a
priori measure of software size than source lines of code” (1990, 71).
They therefore recommended that function point estimates be used in
preference to lines of code estimates as the measure of system size, for
the type of software investigated in their analysis (business applications),
when estimating a priori the effort required for application development.
In a subsequent study, Kemerer and Porter identified the source and
impact of such inter-rater variations in the application of function point
counting rules, suggesting that the results of their analysis could
"provide guidance tc function point standard setting bodies [e.g., IFPUG]
in their deliberations upon rule clarification, and to practitioners as to
where the difficulties lie in the [then] current implementation of function
points" (1992, 1021). In the 1993 report of the results of a field
experiment on "reliability of function points measurement,” Kemerer
concluded that "this experiment has shown, contrary to some
speculation and the limited prior research, that ... the interrater ...

reliability of function points measurement [is] sufficiently high that their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

reliability should not pose a practical barrier to their continued adoption
and future development” (Kemerer 1993, 96).
Generalizability of Function Points

One of the early criticisms of the function points approach was
that it was only suitable for use with management information or
"business” systems. Critics have included Symons (1988, 10), Rubin
(Keyes 1992, 44), Matson, Barrett, and Mellichamp (1994, 276),
Srinivasan and Martin (1994, 73), Whitmire (1995, 43), Glass (Oskarsson
and Glass 1996, 112), Major (1996, 4-9), and, to some extent, Jones
(1991, 81-82). The debate continues as to the appropriateness of the
function points approach in other "application domains" (e.g., scientific
and technical software, "real-time" systems, system software,
communications software) or modern programming techniques (e.g.,
graphical user interfaces and object-oriented programming). To address
these perceived shortcomings of the function points approach, some "off-
shoots" of function points have been proposed, among them function
points Mark II, 3D function points, feature points, and object points.
Others, however, especially recently, point to the success of the function
points approach in a wide range of applications (Bernstein and
Lubashevsky 1995, 17; Garmus and Herron 1996a, Chapter 11).
Presumably IFPUG has been modifying and expanding its published

counting practices to accommodate a wider range of application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

environments. Jones (1996b, 7) recommends eight practical criteria for
those considering the selection of metrics for measuring software
productivity and quality and observes that "it is interesting that the
Function Point metric is currently the only metric that meets all eight
criteria." Further, recent dialogue suggests that function point analysis
is being used as the basis for a set of software development standards
being developed by the International Organization for Standardization
(ISO) (Rehesaar 1997, 1).

Although the software metrics literature is not unanimous on the
generalizability of function points, it appears clear that the function
points approach comes closer than any other metric to being an
industry-wide standard for the measurement of software size.

Software Complexity Considerations in Function Point Analysis

The function point counting process considers two levels of
software complexity: the first is that which determines the weighting
factor to be applied to each of the five entities which are counted as the
first step in the function point counting process. Accepted function point
counting practices provide the rules for determining whether the "low,"”
"average,” or "high" weighting factor should be used. Albrecht's original
model (Albrecht 1979, 85) did not make the distinction between low,

average and high complexity of individual entities. The second category

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

is that of the complexity intended to be captured by the 14 "general
system characteristics” (Albrecht originally had ten) which results in an
adjustment factor applied to the raw, or unadjusted, function point
count to produce the final, or adjusted, function point count. To the
extent that complexity effects are not captured at these two levels by
applying prescribed function point counting procedures, they must
somehow be otherwise incorporated in converting the function point size
estimate into a reasonably accurate effort or cost estimate.

The adequacy of the general system characteristics and the
resultant value adjustment factor, as it is currently determined, in
capturing the effects of complexity has been questioned. Kemerer (1987,
424), for the data used in his validation study, observes that "the
difference between using Function Points, which include 14 factors that
modify the Function Counts, and the Function Counts themselves,
seems slight in this instance.” Symons (1988, 4) states that “the
restriction to 14 factors seems unlikely to be satisfactory for all time” and
“the weights (‘degree of influence’) of each of the 14 factors are restricted
to the 0-5 range, which is simple, but unlikely to be always valid.”
Gaffney (1996, 8) reports on research which indicates that "an estimate
of effort based on counts of only one or several of the function point

primitives [referring to the five entities which are the initial basis for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

counting function points] can be as accurate as an estimate based on
function points. Thus, these results suggest that only some of the
elements of a function point count need be obtained in order to develop
good estimates of development effort.” Boehm (1997, 25), in referring to
the general system characteristics, states that “each of these fourteen
characteristics ... thus have a maximum of 5% contribution to estimated
effort. This is inconsistent with COCOMO experience.” Finnie, Wittig,
and Desharnais (1997, 44) conclude that “the VAF [value adjustment
factor] appears to be inadequate and different methods of adjusting an
estimate to account for complexity need to be devised.” Jamieson (1997),
in suggesting areas in which research might be useful, indicated to this
researcher that many in [FPUG question the value of the general system
characteristics and the value adjustment factor.

Regarding complexity considerations beyond obtaining the final
function point count (i.e., not captured by the value adjustment factor),
Garmus and Herron (1996b, 58), after stating that "to some extent,
complexity levels are evaluated by the function point 14 general system
characteristics,” advise that “The assessment of a project's complexity
must also take complex interfaces, database structures, and contained
algorithms into consideration. You can assess this by using the following

five levels of complexity” [they then list characteristics representative of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

the five levels as they have defined them]. Jones (1996a, Chapter 4)
similarly alludes to additional software complexity which should be taken
into account in assessing factors to be considered in translating the final
function point count into an estimate of software development effort. He
identifies three forms of complexity: (1) the complexity of the underlying
problem and algorithms; (2) the complexity of the source code; and (3)
the complexity of the data and data structures. He advises "when the
major forms of complexity that affect software projects are considered,
there are at least 20 of them," going on to list and discuss each of the 20.
Dreger (1989, Afterword) includes "tools” and "techniques” as project
attributes which must be considered in estimating project work effort
from function points. What appears clear here is that current counting
practices do not, in most cases, result in a final function point count
which adequately captures the effects of all software complexity factors.
Existing Techniques and Models for Deriving Effort Estimates from
Function Point Counts

Current techniques and algorithms which use function points as
the basis for software size measurement and cost and schedule
estimation (i.e., which incorporate cost and schedule driver factors not
captured in the adjusted function point count) are for the most part
proprietary. Giles and Barney (1995, 8-10) list ten automated metrics

tools used in software cost estimation. Five of these accept function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

points as an input. Four of these five are proprietary and therefore
require the purchase of user licenses which range in cost (as of 1995)
from 15,000 to 20,000 dollars. The remaining estimation tool is
government owned and therefore available at no cost for government
organizations, but no mention is made of its being available to private
companies. To this researcher’s knowledge, outside of the very recently
introduced COCOMO II, there exists no readily available, non-proprietary
method or tool for producing total software development effort (manhour)
estimates based on function points.

COCOMO 11

In a paper published in the Annals of Software Engineering
(Boehm et al. 1995), Barry Boehm and his associates announced the
forthcoming release of COCOMO Version 2.0 (since redesignated
COCOMO 1I).

Boehm advises that "the major new modeling capabilities of
COCOMO 2.0 are a tailorable family of software sizing models, involving
Object Points, Function Points, and Source Lines of Code; nonlinear
models for software reuse and reengineering; an exponent driver
approach for modeling relative software diseconomies of scale; and
several additions, deletions, and updates to previous COCOMO effort-

multiplier cost drivers” (1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

In the paper, Boehm describes his "future software practices
marketplace model,” in which he presents his vision of the software

marketplace into the twenty-first century and divides the marketplace
into five sectors, reflective of the various forms which state-of-the-art
software development can take. The COCOMO II model is designed for
applicability to this vision of the software marketplace. In other words,
COCOMO II is designed for use with current and projected software
development practices.

It is Boehm's stated intention that the COCOMO II model will be

publicly available. In Chapter 2 of the COCOMO II Model Definition

Manual, he says (1997, 5): “COCOMO II follows the openness principles

used in the original COCOMO. Thus, all of its relationships and
algorithms will be publicly available.” As was indicated above, the model
has sufficient flexibility to permit (although not require) the acceptance of
function points as an input. Additionally, Boehm has defined an "Early
Design Model" as a variation of the full COCOMO II (Post-Architecture)
Model. Nonetheless, claims of availability and flexibility aside, COCOMO
II remains substantially a lines-of-code based model, as was the original
COCOMO, with “rule of thumb” conversion factors used to convert

function points to nominal lines-of-code values prior to using the model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Of interest for purposes of the research proposed herein is the
manner in which the COCOMO II algorithm treats cost driver factors in
order to capture their impact on development effort and cost. Itis
fundamentally different from the manner in which the current function
points approach captures the influence of the 14 general system
characteristics in determining the adjusted function point count. The
COCOMO II approach suggests a possible improvement to the current
function points approach.

Summary of the Literature Review

In this chapter, the literature which pertains to the introduction of
function points as a proposed software size metric and of the original
COCOMO as a lines-of-code based cost estimating model was discussed.
Following this was a discussion of the literature which validates function
points as an industry-wide size metric, at least for certain application
domains. Next, the debate over the generalizability of function points as
an “industry standard” for software sizing was discussed. Following this
was a discussion of the treatment of software complexity considerations
used in the function points approach, including criticism which
questions the adequacy of the current method, in terms of its ability to
capture the impact of software complexity factors, for calculating the
function point value adjustment factor and consequently the final

(adjusted) function point count for a software development project. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

was followed by a brief discussion of the existing methods and
algorithms, most of them proprietary, used to estimate development cost
from function points. Finally, the recently developed COCOMO II was
introduced. Of particular interest to this research effort is the fact that
COCOMO II postulates an approach for calculating the impact of
software development cost drivers, including complexity factors, which is
fundamentally different from the manner in which the influence of the 14
general system characteristics is captured in determining the final
function point count. This suggests that there may, based on the
treatment of cost drivers in COCOMO II, be an alternative approach for
capturing the effect of the 14 general system characteristics in
determining the adjusted function point count which will answer at least

some of the criticism levied at the current approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

CHAPTER III

RESEARCH ISSUES

The Problem

As indicated in the literature review, function point analysis is
probably the most widely used technique for measuring software size,
and function points can arguably be considered an industry standard as
a size metric. However, function points do not do a good job of reflecting,
or “capturing,” all software complexity factors and the effects of other
system characteristics.

The function points approach first attempts to capture a measure
of complexity by assigning a complexity level (simple, average, complex)
to the five basic entities (inputs, outputs, inquiries, internal files, and
external files referenced) which are counted as a first step in determining
a software project’s function point count. These are weighted and their
weighted values summed to produce the raw, or unadjusted, function
point count.

Next, an attempt is made to capture the effects of 14 “general
system characteristics,” whose values are assessed and used as the basis
for a “value adjustment factor” which is applied to the unadjusted count,
resulting in a final, or adjusted, function point count. However, much

additional manipulation is needed in order to use the adjusted function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

point count as a practical basis for software development cost estimation,
resource allocation, and workload forecasting. This manipulation is
embodied in the various cost estimating techniques which estimate
development cost using function points as a basis (Giles and Barney
1995, 10).

The literature reflects the feeling of many that the function point
“value adjustment factor,” or VAF, which is calculated from the values of
the 14 general system characteristics (GSCs) and applied to the raw or
unadjusted function point count to produce the final or adjusted
function point count, is inadequate in that it adds little value toward cost
or effort estimating, at least in its current form. It is generally accepted,
however, that there needs to be a method for capturing the impact of
complexity and other factors, beyond simply the size metric (function
points or lines-of-code), in estimating development effort and cost.

Throughout the discussion contained herein, there are two
underlying assumptions regarding use of the terms “effort” and “cost”:
one is that by far the greatest contributor to software development costs
is the labor involved. The other is that if one can estimate development
labor in manhours (or manmonths, manyears, etc.) accurately, then, by
knowing the labor rates, labor distribution, and cost accounting

structure for one’s organization, one can readily convert manhours to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

dollar costs for that organization. In this sense, the terms “effort” and
“cost” are treated as being interchangeable.

However, a consistently applied definition of what does and does
not constitute development effort, upon which to base development cost,
is needed, rather than leaving this distinction up to the discretion of the
individual practitioner. Boehm (1981, 51-52), in discussing the software
life cycle work breakdown structure, provides relatively detailed guidance
in this regard. He does not include the requirements development
function as part of the software development process, but he does
include such functions as design, coding, testing (at all levels through
acceptance testing), documentation, configuration management, quality
assurance, and documentation development, as well as the management
function. The exact boundaries of the definition of what constitutes
development effort are not as important as is general agreement on what
those boundaries are.

Boehm et al., who developed the COCOMO II model, concur in the
opinion that the function point value adjustment factor is inadequate in
its current form in adding value toward cost or effort estimating (1995,
13). When using function points as an input, the COCOMO II model
uses unadjusted function points, converts them to equivalent lines of

code (using average function point to lines of code conversion factors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

published by one author (Jones 1991, 76)), and proceeds from there with
the cost estimating algorithm without considering the function point
value adjustment factor at all. It is important to note, however, that
COCOMO 11 is essentially a lines-of-code based cost estimating technique
which can be adapted to accommodate function points, rather than a
function points based technique. It is therefore subject to the
shortcomings of the lines-of-code size metric, discussed in the literature.
A sampling of data from the database established by the
International Software Benchmarking Standards Group (ISBSG) in fact
indicates that much of the time the value adjustment factor as currently
calculated is close to 1.0.
Limitations of the value adjustment factor as currently calculated
from the values of the 14 GSCs include:
1. The 14 GSCs are equally weighted.
2. Their influence is additive (linear).
3. Each of the system characteristics reflected by the 14
GSCs can only contribute a maximum of 5% variation in the
adjusted function point count from the unadjusted count.
(Boehm notes that this is not consistent with the experience of
the developers of COCOMO and COCOMO II (1997, 25-26).)
What Is Not Being Done

While there is significant criticism in the literature of the current

method for determining the value adjustment factor, nowhere is there a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

proposed alternative which addresses the limitations cited above. To be
sure, there are variations on the overall function points approach (Jones’
Feature Points (Jones 1991, 81-94), Symons’ Function Points Mark II
(Symons 1988), and Whitmire’s 3D Function Points (Whitmire 1995)), but
these would render obsolete the accumulated body of function point
data.

A different method for computing the value adjustment factor is
needed, one which will address the existing limitations but which will
permit the continued use of already collected data, toward the objective
of making adjusted function points correlate more closely with
development effort and cost. The intent of seeking such a method, then,
is to find a better, more effective way to use existing data. If such a
technique can be identified, it will represent a significant contribution
toward making function point analysis a useful tool for the software
development manager in estimating effort/costs, planning the allocation
of resources, and forecasting workload.

The treatment of software development cost drivers by COCOMO I
suggests such an approach.

A Proposed Alternate Approach
The function point sizing model uses the following approach to

calculate the effects of the software complexity reflected in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

assessments of the complexity levels of the 14 GSCs (Garmus and
Herron 1996a, 92):

AFP =UFP x VAF (3.1)
where AFP = adjusted function points, UFP = unadjusted function points,
and VAF = value adjustment factor. The value adjustment factor is
calculated using the additive model as follows (Garmus and Herron

19964, 90):

14
VAF =065+001)_ GSC, (3.2)
=]

where each GSC; may take an integer value of O through 5 (Dreger 1989,

66). This results in the equation:

14
AFP = UFP x[0.65+0.012 Gsc,.] (3.3)

inl
The COCOMO II approach, on the other hand, uses the following

basic relationship (Boehm 1997, 13):

17
Effort = Constant x SLOC x [[CD, (3.4)
=]

or, rewriting:

17

Effort = Constant [UFP x (Language-Dependent FP-to-LOC Conversion Factor) x [ICD;] (3.5)
i=1

where CD; are the 17 COCOMO II “cost drivers” or “effort multipliers.”

These are

1. Multiplicative instead of additive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

2. Not necessarily of equal value.

3. Not constrained in the values they can take.

The 14 general system characteristics used in function point

analysis are:

Data Communications

Distributed Data Processing

Performance

Heavily Used Configuration
Transaction Rate

On-Line Data Entry
End-User Efficiency

On-Line Update
Complex Processing
Reusability
Installation Ease
Operational Ease
Multiple Sites
Facilitate Change

Each of these is described briefly in Table 1 (excerpted from Jones

(1991, 64-67)).

Table 1

Function Point General System Characteristics

GSC #

Name

Description

1

Data Communications

Data communication implies that data
and/or control information would be sent or
received over communication facilities.

Distributed Data Processing

Distributed functions are concerned with
whether an application is monolithic and
operates on a single contiguous processor or
is distributed among a variety of processors.

Performance

Performance objectives are scored as 0 if no
special performance criteria are stated by
the users of the application and scored as 5
if the users insist on very stringent
performance targets that require
considerable effort to achieve.

Heavily Used Configuration

Heavily used configuration is scored as 0 if
the application has no special usage
constraints and as S if anticipated usage
requires special effort to achieve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 Continued

GSC #

Name

Description

Transaction Rate

Transaction rate is scored 0 if the volume of
transactions is not significant and 5 if the
volume of transactions is high enough to
stress the application and require special
effort to achieve desired throughputs.

On-Line Data Entry

On-line data entry is scored 0 if none or
fewer than 15 percent of the transactions are
interactive and 5 if all or more than 50
percent of the transactions are interactive.

End-User Efficiency

Design for end-user efficiency is scored 0 if
there are no end users or if there are no
special requirements for end users and 5 if
the stated requirements for end-user
efficiency are stringent enough to require
special effort to achieve them.

On-Line Update

On-line update is scored 0 if there is none
and § if on-line updates are both mandatory
and especially difficult, perhaps because of
the need to back up or protect data against
accidental change.

Complex Processing

Complex processing is scored 0 if there is
none and 5 in cases requiring extensive
logical decisions, complicated mathematics,
tricky exception processing, or elaborate
security schemes.

10

Reusability

Reusability is scored 0 if the functionality is
planned to stay local to the current
application and 5 if much of the
functionality and the project deliverables
are intended for widespread utilization by
other applications.

11

Installation Ease

Installation ease is scored 0 if this factor is
insignificant and 5 if installation is both
important and so stringent that it requires
special effort to accomplish a satisfactory
installation.

12

Operational Ease

Operational ease is scored 0 if this factor is

insignificant and 5 if operational ease of use
is so important that it requires special effort
to achieve it.

13

Multiple Sites

Multiple sites is scored 0 if there is only one
planned using location and 5 if the project
and its deliverables are intended for many
diverse locations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Table 1 Continued

GSC# Name Description
14 Facilitate Change Facilitate change is scored 0 if change does
not occur, and 5 if the application is
developed specifically to allow end users to

make rapid changes to control data or tables
which they maintain with the aid of the
application.

The COCOMO II Cost Drivers are grouped into four categories:
Product Factors

Platform Factors

Personnel Factors

Project Factors (Development Environment)

The 17 COCOMO II Cost Drivers are described in Table 2

(excerpted from Boehm (1997, 35-43)).

Table 2

COCOMO II Cost Drivers

COoCoOMO I Name Description
Designation
Product Factors:
RELY Required Software This is the measure of the extent to which the
Reliability software must perform its intended function

over a period of time. If the effect of a
software failure is only slight inconvenience,
then RELY is low. Ifa failure would risk
human life, then RELY is very hi§h.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2 Continued

COCOMO 1
Designation

Name

Description

DATA

Data Base Size

This measure attempts to capture the effect
large data requirements have on product
development. The rating is determined by
calculating the ratio of database size in bytes to
program size in SLOC. The reason the size of
the database is important to consider is because
of the effort required to generate the test data
that will be used to exeicise the program.

CPLX

Product Complexity

The complexity rating is the subjected
weighted average of the following five areas:
control operations, computational operations,
device-dependent operations, data management
operations, and user interface management
operations.

RUSE

Required
Reusability

This factor accounts for the additional effort
needed to construct components intended for
reuse on the current or future projects. This
effort is consumed with creating more generic
design of software, more elaborate
documentation, and more extensive testing to
ensure components are ready for use in other
applications.

Documentationp
Match to Life-Cycle
Needs

The rating scale for this factor is evaluated in
terms of the suitability of the project’s
documentation to its life cycle needs. The scale
ranges from very low (many life-cycle needs
uncovered) to very high (very excessive for
life-cycle needs).

Platform Factors:

TIME

Execution Time
Constraint

This is a measure of the execution time
constraint imposed upon a software system.
The rating is expressed in terms of the
percentage of available execution time
expected to be used by the system or subsystem
consuming the execution time resource, and
can range from nominal (less than 50%) to
extra high (95%).

STOR

Main Storage
Constraint

This rating represents the degree of main
storage constraint imposed on a software
system or subsystem. In spite of the
remarkable increase in available processor
execution time and main storage, many
applications continue to expand to consume
whatever resources are available, making this
factor still relevant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Table 2 Continued

cocoMo
Designation

Name

Description

PVOL

Platform Volatility

“Platform” is used here to mean the complex of
hardware and software which the software
product being developed calls on to perform its
tasks. The rating ranges from low, where there
is a major change every 12 months or longer, to
very high, where there is a major change every
two weeks.

Personnel Factors:

ACAP

Analyst Capability

Analysts are personnel that work on
requirements, high level design, and detailed
design. The major attributes reflected in this
rating are analysis and design ability, efficiency
and thoroughness, and the ability to
communicate and cooperate.

PCAP

Programmer
Capability

The major factors considered in this rating are
ability, efficiency and thoroughness, and the
ability to communicate and cooperate. The
evaluation shouid be based on the capability of
the programmers as a team rather than as
individuals.

Applications
Experience

This rating is dependent on the level of
applications experience of the project team
developing the software system or subsystem.
The ratings are defined in terms of the project
team’s equivalent level of experience (from
less than two months to more than six years)
with the specific type of application.

PEXP

Platform Experience

“This rating reflects the importance of
understanding the use of more powerful
platforms, including more graphic user
interface, database, networking, and distributed
middleware capabilities.

LTEX

Language and Tool
Experience

This is a measure of the ievel of programming
language and software tool experience of the
project team developing the software system or
subsystem. Software development includes the
use of tools that perform requirements and
design representation and analysis,
configuration management, document
extraction, library management, program style
and formatting, consistency checking, etc.

PCON

Personnel
Continuity

This rating is expressed in terms of the
project’s annual personnel turnover.

Environmental Factors:

TOOL

Use of Software
Tools

The software tool rating ranges from simple
edit and code (very low) to integrated lifecycle
management tools (very higg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Table 2 Continued
cocoMo 1 Name Description
Designation
SITE | Multisite Determining this rating involves the assessment
Development and averaging of two factors: site collocation
(from fully collocated to international
distribution) and communication support (from
surface mail and some phone access to full
interactive multimedia).
SCED Required This rating measures the schedule constraint
Development imposed on the project team developing the
Schedule software, in terms of the percentage of schedule

stretch-out or acceleration with respect to a
nominal schedule for a project requiring a
given amount of effort. A schedule compress
of 74% is rated very low; a stretch-out of 160%
is rated very high.

The 14 function point GSCs do not address personnel or

40

environmental considerations, since these factors are not intrinsic to the

software system itself. However, because they address system

characteristics, with the system comprised of the product and the

platform, they do relate to certain of the COCOMO II Product and

Platform factors, specifically CPLX, TIME, and RUSE, as indicated in

Table 3.

Clearly there are product and platform factors addressed in the
COCOMO II Model which have no counterparts in the function point

GSCs. This may be because of changes in the software development

environment during the period 1984 (when the function point GSCs were

defined) and 1995 (when COCOMO II was introduced); it may be because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Table 3

Relationship between Function Point GSCs
and COCOMO II Cost Drivers

Function Point GSC Related COCOMO II Factor
1. Data Communications CPLX
2. Distributed Data Processing CPLX
3. Performance T TIME
4. Heavily Used Configuration TIME
5. Transaction Rate TIME
6. On-Line Data Entry CPLX
7. End-User Efficiency CPLX
8. On-Line Update CPLX
9. Complex Processing CPLX
10. Reusability - RUSE
11. Installation Ease CPLX
12. Operational Ease CPLX
13. Multiple Sites CPLX
14. Facilitate Changg CPLX

COCOMO and COCOMO II were designed to be cost estimating models,
whereas the function points approach, while producing an output clearly
related to cost, was intended to provide an alternate metric (to SLOC) of
software project size; or it may have had to do with the different
perspectives of the respective developers of function points and COCOMO
II, Allan Albrecht and Barry Boehm. That, however, is not the issue
here. What is of interest is the fact that both approaches attempt to
quantify (i.e., assign numerical values to) qualitative assessments (based
on expert judgment) of the same general type of software system

characteristics. However, as has been discussed, the treatment of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

numerical assessments is substantially different between the two
approaches.

If indeed the two approaches assess and quantify the same type of
characteristics, then the numerical values so obtained should relate in
somewhat the same manner to software project size and, ultimately,
development cost. Since, according to many, the current method in the
function points approach of applying the effects on size (and cost) of the
GSCs is inadequate, the approach used in applying the 17 cost drivers in
the COCOMO II Model may, if used in converting unadjusted to adjusted
function point counts, offer the possibility of improving the usefulness of
the function point GSCs and the resultant value adjustment factor.

Even though COCOMO II remains basically a lines-of-code based
technique, the approach does suggest a different relationship by which to
accommodate system complexity and other considerations, one that
would alleviate certain of the existing concerns with calculation of the
function point value adjustment factor using current procedures.

What is proposed, then, is to develop and evaluate an approach to
apply the existing 14 GSCs in a different manner, one that is similar to
that used by COCOMO II in applying its cost driver factors (i.e.,

multiplicative versus additive).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

This has appeal in that it may allow the GSC data already
incorporated in function point counting procedures and already collected
over the past ten to fifteen years to be used to better advantage (i.e., to
produce adjusted function point counts more closely correlated with
development effort). Admittedly, personnel and environmental
considerations still will not be addressed, but the proposed approach
holds promise for accommodating them in the future.

The Research Question

The research question to be addressed herein, then, can be stated
as follows: is it possible, using a relationship suggested by the COCOMO
II Model, to develop an alternative means of determining the function
point value adjustment factor which will result in a final or adjusted
function point count which will correlate significantly better (than is
currently the case using existing procedures) with software development
effort and therefore cost? Restating this in the form of a null hypothesis:
the correlation between the adjusted function point count and software
development effort will not improve as a result of using an alternative
means of determining the value adjustment factor suggested by
COCOMO 1I cost driver relationships.

Expected Findings
It was expected that the proposed “new” method of calculating the

adjusted function point value from unadjusted function points would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

produce results which are more closely correlated with actual
development effort than are results obtaining using the existing method.
Not only is a new form for assessing the influence of the 14 GSCs
proposed, the calculated contributions of these 14 factors are not
constrained as is currently the case.

When sufficient data are available to conduct a comparison of
performance of the proposed model across different software application
domains, it will be interesting to see if the model performs better for
some application domains than for others, and to compare any such
difference to that experienced using the current method. One of the
criticisms of the function point approach is that it does not perform well
in other than management information system (MIS) (business)
applications. By removing some of the constraints on the degree to
which individual GSCs can influence the value of the adjusted function
point count, it is possible that the influence of certain of the
characteristics of non-MIS applications on development effort can be
more completely or accurately captured in the adjusted function point
count.

Contributions

The research effort described herein addresses limitations of the

function point approach in a manner not reflected in the literature to

date. Although the literature addresses concerns with the usefulness of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

the value adjustment factor, which is based on the assessed values of the
14 GSCs, the research contributes by proposing a new treatment of the
14 GSCs and a new way of calculating the value adjustment factor which
eliminates the basis for at least some of those concerns, those related to
the manner in which the influence of the GSCs is captured (as discussed
earlier). It is important to note that the proposed approach seeks to
retain existing data elements and simply to modify the treatment of
them, ensuring that already-collected data will still be usable and that
current function point counting practices are still valid.

If it could be demonstrated that the results of the proposed
research in fact do provide a new method of calculating the value
adjustment factor which produces adjusted function point counts which
are more closely correlated with actual development effort, then
obtaining a valid estimate of development effort based on function points
would be more straightforward once the adjusted function point count
had been determined. Cost estimating using function points would
therefore be easier for software development managers.

Furthermore, since no “rescaling” of factors reflecting the influence
of the existing 14 GSCs would be necessary, it will be relatively simple to

incorporate additional cost/effort “drivers” into the model. Most notably,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

such factors might include personnel and environmental factors, as
suggested by the COCOMO I model.

Regardless of the outcome (whether an “improvement” is realized in
the value adjustment factor), the results of this research contribute to a
deeper understanding of the key issues involved in relating software size
to development costs and, in particular, the manner in which cost drivers
other than size (as the most significant single cost driver) modulate the
effects of software size in development cost prediction. This research
also contributes to the industry (the management of software
development), by tending either to offer or eliminate an alternative
approach which has the potential for improving the correlation of the
adjusted function point count with software development effort and cost.
And, the results of this research make a contribution to the literature
pertaining to function points and to software cost estimating literature in
general, as well as opening new avenues and directions for future
research.

The results of the research also underscore the need for COCOMO
II to be able to accommodate function points directly as an input. This
could be done by modifying the COCOMO II model or by developing a
function points variant to the model. Currently, in order to use function

points with COCOMO II, one must apply an “industry average”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

conversion factor to produce an ostensibly equivalent lines-of-code figure
from the function point count for input into the COCOMO II model.
Summarizing the contributions of the analysis and discussion
contained herein: first, this research demonstrates the application of a
different treatment of existing parameters (GSCs) used to adjust a
software size metric, one which removes certain constraints on the effect
these parameters may have. This new approach responds to criticism
which has been levied against the current method. Based on the results
of applying the new approach to data from one set of software
development projects, there is a strong indication that the parameters
themselves (i.e., the GSCs) may be inadequate for what they purport to
do, namely capture the effects of “system characteristics” in adjusting
the value of the size metric, the purpose of the metric being to compare
projects, measure productivity, and support effort and cost estimation
and prediction. Additionally, an indication is provided of those individual
system characteristics (GSCs) identified in the function point analysis
process which do significantly affect development and cost as well as
those which have little or no effect. The research provides the
groundwork for investigation into the mechanics by which variations in
“system characteristics” impact software development effort and cost.

Directions are offered for further research which is indicated by the work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

here, specifically assessment of the proposed new approach using a
better set of data (i.e., a better cross-section of modern software project
data) and investigation into the adequacy and appropriateness of the 14
existing GSCs. Contributions to the practice and methodology of
software cost estimating include: (1) demonstration of the feasibility of an
alternative approach; (2) identification of the need to re-evaluate the
appropriateness of the existing GSCs; and (3) identification of a need for
better dialogue between IFPUG and the COCOMO II proponents, with a
“closing of the ranks” so that function points become a direct input to the
COCOMO II cost estimating model. The current need in COCOMO II to
convert function points to equivalent lines-of-code using industry average
conversion factors only introduces another source of error or

inaccuracies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

CHAPTER IV

RESEARCH METHODOLOGY

Development of a Proposed New Model for Determining Adjusted

Function Points

The first step in accomplishing the proposed research was as
follows: the “provisional values” (Boehm 1997, 73) of the multipliers
corresponding to each of the qualitative ratings assigned to each of the
17 cost driver factors of COCOMO II were studied. It was observed that
in each case the value of the multiplier corresponding to the “nominal”
rating is 1.0. Boehm explains that “the average effort multiplier [weight]
assigned to a cost driver is 1.0, and the rating level associated with that
weight is called Nominal” (1997, 13). The following exponential form
(Equation (4.1)) will consistently produce a value of 1.0 when k=0,
regardless of the value of n:

Value = (n)k (4.1)

From examination of the values of the COCOMO II multipliers, 7 was
found to be a number between 1.00 and 1.25 when a higher rating for
the cost driver results in a higher cost estimate and between 0.80 and
1.00 when a higher rating for the cost driver results in a lower cost

estimate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S50

In order to determine if values of n could be identified which would
produce reasonable approximations of the COCOMO II values for the
multipliers when k was a number other than zero, the following approach
was used. First, sequential positive integer values were assigned to
values of k for COCOMO II cost driver factor rating levels above
“nominal” and sequential negative integer values were assigned for rating
levels below “nominal.” Sequential integers were chosen because values
assigned the possible rating levels for the function point GSCs also
consist of sequential integers ranging from O through S (Dreger 1989,
66). The significance of this will be demonstrated later in the discussion.

An approach suggested by Conte, Dunsmore, and Shen (1986,
172-173) was then applied. For each of the 17 cost drivers, different
values of n, rounded to two decimal places for consistency with the
COCOMO II provisional values, were used to calculate the value of the
multiplier for the various non-zero values of k. The magnitude of the

relative error (MRE), defined as

< 4.2)

was determined for each rating level (&), where M, is the calculated value
of the multiplier using the exponential relationship (Equation (4.1)) and
M. is the value of the multiplier obtained from the COCOMO II Model

Definition Manual (Boehm 1997, 73). The “error” in this case, for a given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

value of k, is the difference between the calculated value of the multiplier
using Equation (4.1) and the COCOMO II value of the multiplier. For
each cost driver, the value of n which resulted in the lowest mean MRE
for the non-zero values of kwas therefore the one which provided
calculated multiplier values which best approximated the COCOMO II
multiplier values.

The results of this process are illustrated in Table 4. For each of
the 17 cost drivers, the 1997 “provisional” value of the multiplier, based
on analysis of 83 software development projects (Boehm 1997), is listed
for each applicable k value, followed by the results obtained using

Equation (4.1), with the value of n determined as described above.

Table 4

Comparison of COCOMO II Cost Driver Provisional
Values with Corresponding Values Obtained
Using Proposed Exponential Form

Rating Level
Cost Very Low | Nominal | High Very Extra
Driver Low High High
k=-2 k=-1 k=0 k=+1 k=+2 k=+3
RELY | COCOMO I 0.75 0.88 1.00 1.15 1.39
n=1.16 0.74 0.86 1.00 1.16 1.35
DATA | COCOMOII 0.93 1.00 1.09 1.19
n=1.09 0.92 1.00 1.09 1.19
CPLX |[CoCcoMOII 0.75 0.88 1.00 1.15 1.30 1.66
n=1.15 0.76 0.87 1.00 1.15 1.32 1.52
RUSE | COCOMOII 091 1.00 1.14 1.29 149
n=1.14 0.88 1.00 1.14 1.30 1.48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Table 4 Continued

Rating Level
Cost Very Low | Nominal | High Very Extra
Driver Low High High
k=-2 k=- k=0 k=+1 k=+2 | k=43
DOCU | COCOMO I 0.89 0.95 1.00 1.06 1.13
n=1.06 0.89 0.94 1.00 1.06 1.12
TIME | COCOMO II 1.00 1.11 1.31 1.67
n=1.15 1.00 1.15 1.32 1.52
STOR | COCOMOII 1.00 1.06 1.21 1.57
n=1.10 1.00 1.10 1.21 1.33
PVOL |COCOMOII 0.87 1.00 1.15 1.30
n=1.15 0.87 1.00 1.15 1.32
(For the following cost drivers, a lower rating implies a higher multiplier; consequently,
the “n” values are < 1.0.)
ACAP |CoCcoOMO I 1.50 1.22 1.00 0.83 0.67
n=0.82 1.49 1.22 1.00 0.82 0.67
PCAP | COCOMOII 1.37 1.16 1.00 0.87 0.74
n=0.86 1.35 1.16 1.00 0.86 0.74
PCON | COCOMO I 1.24 1.10 1.00 0.92 0.84
n=0091 1.21 1.10 1.00 0.91 0.83
AEXP | COCOMO II 1.22 1.10 1.00 0.89 0.81
n=0.90 1.23 1.11 1.00 0.90 0.81
PEXP | COCOMO II 1.25 1.12 1.00 0.88 0.81
n=0.89 1.26 1.12 1.00 0.89 0.79
LTEX | COCOMOII 1.22 1.10 1.00 0.91 0.84
n=0.91 1.21 1.10 1.00 091 0.83
TOOL | COCOMO II 1.24 1.12 1.00 0.86 0.72
n=0.89 1.26 1.12 1.00 0.89 0.79
SITE |COCOMOII 1.25 1.10 1.00 0.92 0.84 0.78
n=0.92 1.18 1.09 1.00 0.92 0.85 0.78
SCED |CoCcOMOII 1.29 1.10 1.00 1.00 1.00
n=0291 1.21 1.10 1.00 0.91 0.83

Additionally, these comparisons are displayed graphically in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

It was found that in most cases there was a very close “fit” between
the value of the COCOMO II multiplier and the multiplier value which
resulted from Equation (4.1) for the value of n determined as described
above. This was observed to be true for values of k over the range of
interest (k= -2 to k= +3). Larger values of k (positive and negative) were
not considered as they would have no counterpart in a COCOMO II
rating level. The results presented in Table 4 and Appendix A were
sufficiently good over the range of interest to warrant investigating if
such a relationship can be applied to advantage in seeking a better way
to calculate the function point value adjustment factor.

The next step, therefore, was to devise a means whereby the six
possible ratings of each function point GSC can be assigned values
which will permit use of the relationship (Value = (n)¥) in calculating the
value adjustment factor. According to the literature pertaining to the
counting of function points (Dreger 1989, 66; Jones 1991, 65; Garmus
and Herron 1996a, 81), a value of 3 is assigned to a GSC if it has
“average” influence on the particular software effort being addressed. If
the six possible numerical values each GSC may take are “remapped”

onto a scale of -3 through 2, as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

old New
0 -3
1 -2
2 -1
3 0
4 1
5 2

then the value when the GSC has “average” influence becomes O vice 3,
corresponding to the k value of O for the “nominal” rating in COCOMO II.
For a suitable alternative method of calculating adjusted function

points (AFP) from unadjusted function points (UFP), then, the following

form is proposed (Equation (4.3) is identical to Equation (3.1)):

AFP = UFP x VAF (4.3)
14
VAF =[] n} (4.4)
il
Therefore:
14
AFP =UFP x[[nf (4.5)

i=l
where k;is the rating value (integers -3 through 2) of the /& GSC, and
the n; are numbers to be determined.
The Current Research Effort with Respect to Software Cost
Estimating Theory and Practice

It is important at this point to place the current research effort in

perspective relative to the theory and practice of software cost estimating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S5

The body of theory pertaining to the software cost estimating
process is quite small and is incomplete. Conte, Dunsmore, and Shen
(1986, 274) cite the “lack of progress in scientific approaches to this
problem.” They note that “there are literally hundreds of factors that
may affect productivity and hence effort” (280). They also note, however,
that many of these are insignificant and can be ignored, and that others
are highly correlated and can be combined into a single factor. The
implication here is that it is important to attempt to identify and capture
the effects of significant, substantially independent factors which affect
effort and hence cost.

Conte, Dunsmore, and Shen (1986, Chapter 6) identify and discuss
in detail four categories of software cost estimation models: historical-
experiential, statistically-based, theoretically-based, and composite.

Historical-experiential models may be simplistically described as
expert judgment, either individual or collective. Statistically-based
models are subdivided into linear statistical models and nonlinear
statistical models.

Linear statistical models are generally of the form
Effort= ¢, + Z C,x; (4.6)
=]

where the x; are software attributes or factors that are believed to affect

software development effort (sometimes called cost driver attributes).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to Conte, Dunsmore, and Shen (281), most of the nonlinear
statistical models are of the form
Effort = (a + bS€) m(X) 4.7)
where:
S is the size of the project;

a, b, and c are constants usually derived by regression analysis;
and

m(X) is an adjustment multiplier that depends on one or
more cost driver attributes.

Conte, Dunsmore, and Shen also point out that, in some cases, a, b, and
¢ may also be functions of one or more cost drivers and advise that m(X)
can be a complicated function of several variables (281-282). The need
for large amounts of data, consistently defined, for empirically
determining the values of the multipliers and constants becomes obvious
and provides an indication of how data-constrained the practical
implementation of such models can become. If a=0 and m(X) = 1, it
can be seen that Equation (4.7) is the equivalent of Equation (1.1)
(Wellman, 1992, 36).

A third category of cost estimation model cited by Conte,
Dunsmore, and Shen is that of theoretically-based models. They advise
that such models are “based on theories of how the human mind

functions during the programming process and on mathematical laws

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S7

that the software process is assumed to follow.” They describe three
such theoretically-based models in detail. Two of these are of a form
which makes it appropriate to mention them with respect to the current
research. These are the Putnam Resource Allocation Model and the
Jensen Model. The Putnam Model can be written as (Conte, Dunsmore
and Shen, 294):

3
Effort = % (4.8)

where Sis project size in terms cf lines of code produced, Tis
development time, and Cis described as a “technology constant.”
Relating these terms to the cost drivers which have been discussed
herein with respect to the function point value adjustment factor and the
COCOMO II cost model: first, the inverse fourth power relationship of
time with effort would equate to a direct such relationship of effort with
the COCOMO II schedule constraint factor (SCED), an environmental
factor, or “characteristic,” not captured by the function point GSCs.
Putnam’s work apparently led him to the conclusion that development
time is a major factor affecting effort; however, Conte, Dunsmore, and
Shen (291) point out that other researchers do not support the severe
penalty imposed on schedule constraints by Putnam’s “fourth power”
law. The technology constant Cis intended to reflect the effect on

productivity of such factors as hardware constraints, program complexity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S8

(these two constitute “system” characteristics), personnel experience
levels, and the programming environment (in other words, personnel and
environmental factors). According to Conte, Dunsmore, and Shen (290),
Putnam proposed either using a discrete spectrum of 20 predetermined
values of C (which presumably he had developed) or using historical
project data (which, of course, introduces an empirical element). Conte,
Dunsmore, and Shen used a least squares regression to obtain values of
C from historical data, then applied those values to “several databases.”
In their words, the results showed “uniformly poor performance.”

The Jensen Model is similar to Putnam’s. It can be written as
follows (Conte, Dunsmore, and Shen, 296):

2
Effort = cTiz (4.9)

where S and Trepresent the same parameters as described above for the
Putnam Model and cis a constant which incorporates a “basic
technology” factor as well as product, personnel, and computer
(hardware) considerations, plus scale modifications. Conte, Dunsmore,
and Shen conducted an evaluation of the Jensen Model similar to that
applied to the Putnam Model, above (including the use of least squares
regression with historical data to determine values for ¢), and found

performance “slightly better than that of the Putham Model, but ... still

very poor.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

The third theoretically-based model discussed by Conte,
Dunsmore, and Shen (296-300) is the Software Science Effort Model. Its
approach is substantially different from the Putnam and Jensen Models.
The assumptions underlying the development of this model limit its
theoretical basis to small, one-programmer projects. Conte, Dunsmore,
and Shen point out that, although the “theory of Software Science
initially captured the imaginations of many researchers since it proposed
what appeared to be a sound theoretical basis for understanding the
human mental processes involved in programming,” that “subsequent
research has cast considerable doubt on the psychological assumptions
underlying the theory.” They further advise that “the weight of empirical
evidence ... tends to dispute the validity” of the model “as an effort
estimator on more realistic projects.”

Finally, Conte, Dunsmore, and Shen (300) introduce a fourth
category of cost estimating model which they call composite models.
Composite models incorporate a combination of analytic equations,
statistical data fitting, and expert judgment. They cite COCOMO as “the
best known of all composite models” (in 1986) and advise that COCOMO
is the most complete and thoroughly documented of all models for effort
estimation. COCOMO II is basically an update, some 16 years later, of

the initial COCOMO model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Conte, Dunsmore, and Shen (301) present the basic COCOMO
equation as being of the form:

Effort = a; SPi m(X) (4.10)
where a;varies with the mode (three modes are identified: organic,
semidetached, and embedded) and level (basic, intermediate, and
detailed, as identified earlier in Chapter I), and b; varies only with the
mode. The m(X) term is a composite multiplier that depends on the
values of 15 cost driver attributes.

In the update of COCOMO to COCOMO II, the form was modified
to the following (Boehm 1997, 13):

Effort =4 SB m(X) (4.11)
where A is an empirically determined constant and the exponent Bis
used to capture economies of scale. The COCOMO II Model Definition
Manual (Boehm 1997, Chapter 3) provides a detailed discussion of how
the economies of scale are assessed. If B < 1.0 for a given project, the
project exhibits economies of scale; if B> 1.0, the project exhibits
diseconomies of scale; and if B = 1.0, the economies and diseconomies of
scale are in balance. In COCOMO II, the composite multiplier m(X)
reflects the effects of 17 cost drivers, as is discussed elsewhere herein. If
the value of Bis taken as 1.0, it can easily be seen that Equation (4.11)

is the equivalent of Equation (3.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

The discussion of the various categories of software cost estimation
model by Conte, Dunsmore, and Shen leads to three conclusions: first,
the body of theory which exists in support of software cost estimating is
very limited; second, the theoretically-based models described by Conte,
Dunsmore, and Shen place a heavy reliance on historical, or empirical,
data; and finally, the majority of these models assume a multiplicative
relationship between effort and cost drivers, technology factors, time
constraints, etc. In other words, a multiplicative relationship has been
assumed between effort and product and platform factors (system
characteristics), as well as personnel and environmental factors.

In using lines-of-code as the size metric, even though the definition
of a “line-of-code” is subject to some interpretation, and the term must
therefore be precisely defined, one is working with a tangible entity.
However, such is not the case with function points. Function points, as
has been discussed, are a synthetic metric whose value lies in what they
represent for purposes of correlation and comparison. As Abran and
Robillard (1994, 181) note, “function points do not derive from a well-
defined and proven theory; they are entirely empirically based on expert
opinion.” When Albrecht attempted to incorporate the effects of the
general system characteristics into the final, or adjusted, function point

count, in effect he was incorporating some portion of the effect of the cost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

driver adjustment multiplier, m(X) in the preceding equations, into the
size metric S (i.e., the adjusted function point count). The multiplicative
relationship assumed in this case as opposed to an additive relationship
for capturing such effects in the adjusted function point count is
therefore consistent with most software cost estimating models found in
the literature.

The exponential form, nX, relationship used earlier for determining
the values of multipliers is not addressed in the limited software cost
estimating theory that exists. It originated as a result of the analysis
described earlier. From this analysis, a computational means was
provided for approximating the behavior of similar multipliers, which
were based on historical data for 83 projects, developed for use in the
COCOMO II cost estimating model by Boehm (1997, 73).

Determining and Applying Function Point Multipliers for the
Revised Model

The next step was to determine the numbers (the n;) to be used as
the basis for calculating the function point multipliers using the
exponential form shown in Equation (4.1) and the “remapped” rating
levels of the GSCs, assigned numerical values of -3 through 2. Assuming
a directly proportional relationship between development effort and the

adjusted function point value (since attaining a closer such relationship

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a stated goal of the research), this relationship may be stated as

follows:

14
Effort = Constant x AFP = Constant x UFP an,"' (4.12)
i=l

or, converting to logarithmic form:
Log (Effort) = Log (Constant) + Log (UFP) +i k, Logn, (4.13)
)
Rewriting the equation results in:
Log (Effort) - Log (UFP) = Log (Constant) +i(Log n,)k, (4.14)
)

This produces an equation to which the following linear statistical model

can be applied:
y=a+px +px,+..+Pxi+ e (4.15)
where:
y = [Log (Effort) - Log (UFP)] (4.16)
a = Log (Constant) (4.17)
PBi=Logn; (4.18)
xi=ki (4.19)

The random error term, ¢, would contain the effect of personnel and
environmental cost drivers which it is already acknowledged are not
being captured. It would also include the effects of any “system

characteristic” cost drivers not captured by the 14 currently defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

GSCs, as well as any other variation between theoretical values and
empirical results.

Given that sufficient project data are available or can be collected,
by applying regression analysis to a random sampling (i.e., a portion) of
those data, values b; which are estimates of f§; (or Log n;) can be
determined. From there estimated values for the z2; can be determined.

With these values of n;, the “new” adjusted function point counts

for the remainder of the data can be calculated, using

14
AFP=UFP x [[nf (4.5)

i=l
as well as the “traditional” adjusted function point counts using

Equation (3.3), restated here as Equation (4.20):

14
AFP = UFP x[0.65 +001) GSC,.] (4.20)

i=l
A statistical comparison can then be conducted to determine if AFPnew
correlates significantly better with actual development effort than does
AF Pold.

Data Collection and Methodology

Obtaining adequate data with which to accomplish the research
proved to be much more difficult than anticipated. With an earlier
version of the planned research approach, one that required individuals

to respond to a survey, 30 members of IFPUG, as a pilot group to “test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

the waters,” were sent survey packages and questionnaires by mail.
There were no responses. Next, an appeal was broadcast over the
Internet to the approximately 800 members of the Function Point
“ListServ” Group (the ListServ is an Internet forum of function point
practitioners, researchers, and other interested individuals, moderated at
the Software Engineering Management Research Laboratory at the
University of Quebec at Montreal). While there were a few responses,
these resulted in no data. A second ListServ appeal yielded data from
one individual for two projects. These are included in the data for the
research reported herein.

The research plan was modified to be less ambitious in its data
requirements, and another request was made to the ListServ moderator,
Denis St-Pierre of the University of Quebec at Montreal. St-Pierre
referred this researcher to Jean-Marc Desharnais, also of the University
of Quebec at Montreal, who graciously provided the data for 299 software
development projects. These data had been collected by Desharnais for
projects completed over the period 1982 through 1990. Data for a
portion of these projects had been used by Desharnais in his Masters
thesis (Desharnais 1988), and the data for all 299 projects were used as
the basis for the analysis reported by Finnie, Wittig, and Desharnais

(1997). Data for two projects, both completed in 1997, were provided by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dillard Boland of Computer Sciences Corporation, in response to an
earlier appeal to the Function Point ListServ Group.

Relevant data for the 301 projects, 299 supplied by Desharnais
and two provided by Boland, were transferred into a Microsoft Excel
Version 5.0 PC-based computer file. A printout of these data is provided
as Appendix B. A description of the data elements in Appendix B is
provided here:

Project No: A sequential project number. The 299 projects for

which data were provided by Desharnais are numbered 1 through

299.

Effort (mh): Software development effort in manhours.

UFP: The total unadjusted function points for the project.

GSC #1 - GSC #14: Assessed values for the 14 general system
characteristics for the project.

AFPoa: The adjusted function point value calculated using the
current method (see Equation (4.20)).

Approximately 70 percent of the projects (210) were randomly
selected from the total of 301, using the PC-based Random Number
Generator Program written by Graziano and Raulin of the State
University of New York at Buffalo. These were entered into a separate
Microsoft Excel file. The appropriate conversions of data elements for
these 210 projects were made as necessary to support the regression

analysis discussed above. These data are displayed in Appendix C. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

description of the data elements in Appendix C, not already discussed

earlier, is provided here:
GSC(adj)1 - GSC(adj)14: Assessed values for the 14 general
system characteristics for the project adjusted so that a value of
zero corresponds to an assessment of “average.”

LOG(Effort): Logarithm (to the base 10) of the number of
manhours of effort.

LOG(UFP): Logarithm (to the base 10) of the number of
unadjusted function points.

Estimated values for the n; for the 14 GSCs, following the approach
described earlier, were then calculated.

Using these values for the n;in the relationship

14
AFP =UFP x [] nf (4.5)

=t
adjusted function point values, using the proposed new approach, were
calculated for the remaining 91 projects. Data for these projects,
including the AFPrew value for each project, were entered into a Microsoft
Excel file and are displayed in Appendix D. As before, a description of
the data elements in Appendix D, not already discussed, is provided

here:

Overall Multiplier: The value adjustment factor calculated using
the proposed new approach (see Equation (4.4)).

AFPnew: The adjusted function point value calculated using the
proposed new approach (see Equation (4.5)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Next, sample correlation coefficients for the 91 projects were
determined for the correlation of AFPad4 with development effort and for
the correlation of AFPnew with development effort.

The mathematical computations and the statistical analysis were
accomplished using the Function and Data Analysis Tools, respectively,
contained in Microsoft Excel Version 5.0. Stepwise regression was
accomplished using the JMP statistical software, Version 3.2.2,
manufactured by SAS Institute Inc.

Finally, testing of the significance in the difference between the two
correlation coefficients, as described in the following chapter, was
conducted.

A summary listing of the steps involved in the data collection and
methodology is provided below:

1. Identify data requirements based on proposed research
approach.

2. Solicit data from likely sources.

3. Obtain data and consolidate in a PC-based spreadsheet file
(Microsoft Excel Version 5.0)

4. Use a random number generator to randomly select
approximately 70 percent of the projects (210 in this case) for
use in developing n; values for the model.

5. Enter these projects into a separate spreadsheset file.

6. Use the steps outlined in Equations (4.4), (4.5), and (4.12)
through (4.19) and the accompanying discussion to calculate
values for the n:.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

7. Enter the remaining 30 percent of the projects (91) into a
separate spreadsheet file.

8. Calculate the AFPnew values for these 91 projects using the
proposed new approach and using the n;values calculated in
Step 6 above.

9. Determine the sample correlation coefficient for the correlation
of AFP.q with development effort and for the correlation of
AFPrew with development effort.

10. Test for significance in the difference between the two
correlation coefficients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

CHAPTER V
RESULTS AND CONCLUSIONS

Results

Linear regression was applied to the data in the logarithmic form
as described in the previous chapter. The multiple correlation
coefficient, R2, was 0.24, indicating that only 24 percent of the variability
(in the logarithmic form upon which the regression was applied) was
accounted for by the resultant regression equation. While this was of
some concern, it has already been acknowledged that certain software
development cost driver factors are not captured by the 14 GSCs. The
contribution made by each of the 14 GSCs can be seen in Table S, which
provides the results of stepwise regression.

The n; values obtained by the regression analysis, for use in
calculating adjusted function point values from the relationship, shown

earlier as Equation (4.5)

14
AFP =UFP x[] nf (5.1)

il
are provided in Table 6.
It is of interest to note that, based on project data from the 210
projects, the values of the n;for three of the GSCs (1, 5, and 6) are less

than one, meaning that the higher the rating for the presence of each of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5

Results of Stepwise Regression

71

GSC GSC CoefTicient fstatistic FRatio | Prob. F
Number Description
9 Complex 0.05226 3.7889 14.356 0.0002
Processing
13 Multiple Sites 0.05056 3.3002 10.891 0.0011
6 On-Line Data -0.01779 -1.3061 1.706 | 0.1931
Entry
14 Facilitate Change 0.01898 1.3721 1.883 0.1716
1 Data Communi- -0.02233 -1.5348 2356 | 0.1264
cations
8 On-Line Update 0.02089 1.1689 1.366 0.2439
3 Performance 0.01611 1.0511 1.105 0.2945
5 Transaction Rate -0.02474 -1.3787 1.901 0.1696
10 Reusability 0.01461 0.8717 0.760 0.3844
12 Operational Ease 001119 0.6565 0.431 0.5123
4 Heavily Used 0.00511 0.2792 0.078 0.7804
Configuration
11 Installation Ease -0.00127 -0.0845 0.007 | 0.9327
2 Distributed Data 0.00045 0.0223 0.000 0.9822
Processing
7 End-User 0.00007 0.0040 0.000 0.9968
Efficiency
Table 6
Proposed Function Point Multipliers (n;)
GSC Description n; GSC Description nj
No. No.
1 Data Communications 0.95 8 On-Line Update 1.05
2 | Distributed Data 1.00 9 | Complex Processing 1.13
Processing
3 | Performance 1.04 10 | Reusability 1.03
4 | Heavily Used 1.01 11 | Installation Ease 1.00
Configuration
5 | Transaction Rate 0.95 12 | Operational Ease 1.03
6 | On-Line Data Entry 0.96 13 | Multiple Sites 1.12
7 | End-User Efficiency 1.00 14 | Facilitate Change 1.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

those particular characteristics, the lower the value of the value
adjustment factor and the adjusted function point count using the
proposed new approach. The direction of this effect is opposite that
which results from current function point counting procedures. Further,
three other of the GSCs (2, 7, and 11) had n;values extremely close to
1.0, meaning that differences in the GSC rating value have little effect on
the (revised) adjusted function point count.

Such an outcome (negative influence or no influence) was not
anticipated for six of the 14 GSCs, as it seemed reasonable to expect an
increasing positive contribution to the adjusted function point count as
GSC rating values increased. In fact, for the sample of 210 projects, the
regression coefficients of only two of the cost drivers (in the logarithmic
equation), GSC number 9 (Complex Processing) and GSC number 13
(Multiple Sites), were significant at the five percent level (using the ¢-
statistics for the individual coefficients). These two cost drivers (GSCs
number 9 and 13) were also those with the highest resultant n; value (see
Table 6) and therefore those whose multipliers (resulting from rating
levels other than “average”) will have the greatest impact on the
calculated value of the value adjustment factor using the proposed new

approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Nonetheless, in order to proceed with development of the model,
the proposed multiplicative relationship using all 14 of the n;values was
applied to data for the remaining 91 projects to determine values for
AFPnew. As indicated earlier, these data, including calculated values for
AFPrew, are displayed in Appendix D. Coefficients of correlation were
then calculated for the sample for the correlation between AFPod and
development effort and for the correlation between AFPpew and
development effort, with the following results:

aepg o= 0-744502 (5.2)
Parp aion = 0-703164 (5.3)

Clearly this is contrary to the expected result: For the sample, the
current method produced adjusted function point values more closely
correlated to effort than did the proposed new method, in spite of the
elimination of certain constraints with the new method. In testing for
significance in the difference between the two correlation coefficients, the
guidance provided by Downie and Heath (1974, 228) was followed. For a
situation such as that which exists here, in which “variable 1 is
correlated with variable 2, and variable 1 is also correlated with variable
3, and all measurements are made oﬁ the same sample,” they suggest a ¢

test with ¢calculated as follows:

(ra - "u)\/ (N =3)1+n,) (5.4)

=
2_ 22
\/2(1‘42 —h3—Iy +2’iz’is’23)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

This is interpreted by going into the ¢table with V- 3 degrees of freedom.

In the case at hand:

F12 = Fagpy et = 0- 744502 (5.5)
P13 =Tasp__ oton = 0-703164 (5.6)
P23 =Taspy arm, = 0914336 (5.7)
N=91 (5.8)

This calculation produces a fvalue of 1.4081. At 88 degrees of freedom,
the difference by which rarpold.effort €Xceeds IarpPnew,effort is significant at the
.10 level but not the .05 level. Further, the desired outcome was that the
proposed “new” method of calculating the adjusted function point value
from unadjusted function points would produce results more closely
correlated with actual development effort than are results obtained using
the existing method (i.e., the alternate hypothesis was that rarpnew,effort
would exceed rarpoidefiort). Clearly, then, the null hypothesis
Ho: Tarp_ et = Tarp oy efiont (5.9)

cannot be rejected.
Discussion of Results

In applying the model developed using the approach described
earlier to the randomly extracted test data set, no improvement was

realized in the contribution of the GSCs toward correlating adjusted

function point count with development effort. This was true even with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

the removal of constraints which were the subject of criticism. This
provides an indication that the GSCs as currently defined may be
inadequate in capturing all “system” (product and platform) cost driver
factors in a software development project. For those engaged in software
cost estimating who were already skeptical regarding the use of function
points as the basis for developing cost estimates, these results obviously
would tend to increase the level of skepticism.

Based on the results of the analysis described herein with the
particular data set used, there is an indication that GSCs number 9
(Complex Processing) and 13 (Multiple Sites) influence development effort
and cost significantly, while GSCs number 2 (Distributed Data
Processing), 7 (End-User Efficiency), and 11 (Installation Ease) have
virtually no effect. If similar results were to be obtained in applying the
proposed approach to other data sets, that would represent an important
contribution to any initiative to “overhaul” the GSCs as currently defined,
in the sense of indicating GSCs which should be retained or eliminated.

Boehm (1997, 35-37), in the COCOMO II Model, identifies a total of
eight (five product and three platform) effort multipliers (cost drivers)
which are based on “system” characteristics. However, as indicated
earlier, the 14 function point GSCs “map” onto only three of these. This

would support the contention that there are system characteristics that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

the GSCs do not capture which do (or can) affect development effort and
cost.

Clearly, there are personnel and environmental considerations
(drivers) which affect cost but which cannot be considered intrinsic
characteristics of the system. DeMarco and Lister (1987) discuss such
factors in detail, and Boehm (1997, 37-40) incorporates these
considerations into the COCOMO II model. As a rough indicator of the
relative influence afforded system characteristics (product and platform)
in COCOMO II, as opposed to personnel and environmental
considerations, the maximum possible contribution of each of these two
groupings of factors on the estimated cost can be determined. If the
eight product and platform cost drivers were assessed at their maximum
values, they would result in a multiplier of 15.76 (as opposed to a
multiplier of 1.00 if all were assessed at the “nominal” value); if the nine
personnel and environmental cost drivers were similarly assessed at their
maximum values, they would result in a multiplier of 9.48 (as opposed to
1.00 for “nominal). In other words, Boehm, in COCOMO II, while
assigning greater potential weight to system (product and platform)
characteristics, still assigns significant weight to personnel and
environmental considerations. The function point GSCs.clearly do not

reflect such considerations, nor was it so intended, and this can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

obviously be a source of variation in effort and cost from project to
project.

In examining the values of the n; which resulted from the
regression analysis and conversion from the logarithmic form described
earlier, it was noted that the regression coefficients for only two of them
were significant at the five percent level. It is possible that this resulted
from the specific characteristics of the data set used to calculate the
multipliers. It is also possible that some GSCs covaried with those GSCs
whose regression coefficients were significant. Finnie, Wittig, and
Desharnais (1997), reporting on research that used 299 of the 301
projects used in this research effort, in addressing claims of ambiguity as
well as incompleteness levied against the GSCs as currently defined,
conclude that “it appears that there is considerable covariance and that a
number of the factors are difficult to separate” (43). Symons (1988, 4)
similarly concludes “some of the factors, as currently defined, appear to
overlap ... ; some reshuffling of the factors appears desirable.” It was
argued earlier that the GSCs as currently designed do not capture all of
the system characteristics which have the potential to affect development
effort and cost.

Conclusions
An obvious conclusion that can be drawn from the results of this

effort is, for the data sample used for the analysis, the proposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

multiplicative model for calculating the function point value adjustment
factor did not result in an improvement over the additive model currently
in use.

There are two areas upon which one should focus in order to
attempt to assess the underlying reasons for the outcome realized herein.
The first concerns the degree to which the data used for this analysis
represent the modern software development environment in general. The
second is the question of whether the general system characteristics, as
currently defined, adequately capture the effects of potential system (i.e.,
product and platform) cost drivers.

First addressing the adequacy of the data used for this research to
represent software development in general: it has been the experience of
this researcher with an earlier research attempt as well as with this effort
that obtaining software development project data, especially data relating
to development effort, cost, and productivity, is quite difficult. There is
an extreme reluctance in the industry to share such information. It was
thus necessary to work with those data which were available. The data
available to this researcher were, with the exception of two projects,
obtained from a single source, Jean-Marc Desharnais of the University of
Quebec at Montreal. The data represent software development projects

which were completed over the period 1982 through 1990. Eighty-one of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

the projects were used by Desharnais (1988) as the source of data for his
Master’s Thesis, and all 299 projects were used by Finnie, Wittig, and
Desharnais (1997), for the data used in their research. Data from the
299 projects were obtained from only 17 organizations, and all 299
development projects were for MIS (business) applications (the two
projects for which data were provided by Boland were for
scientific/engineering applications (Boland 1998)). Desharnais himself
accomplished the function point counts for 168 of the 299 projects,
although this should not present a problem, based on the research
reported by Kemerer (1993) pertaining to interrater reliability in the
counting of function points.

While 301 projects should be a sufficient number upon which to
base meaningful conclusions, clearly 299 of them cannot be considered
to be representative of a cross-section of modern software development
projects, in view of the time period during which they were completed,
the limited number of organizations from which they were drawn, and
the fact that they all lie in the management information system (MIS)
application domain. Therefore, no conclusion can be reached as to
whether the removal of constraints on determining the value of the value
adjustment factor, using the proposed new approach, would have

resulted in an improvement (i.e., better correlation of the adjusted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

function point count with development effort) over the current method for
non-MIS applications.

As noted earlier, obtaining data for software development projects
is a challenge. However, if adequate data can be collected, the proposed
alternative (multiplicative) method should be re-evaluated using data
from much more recently completed projects, representing a cross-
section of application domains as well as a greater number of software
development organizations. Only then can the results be generalized to
the overall software development community.

With respect to the adequacy of the 14 general system
characteristics, as currently defined, in capturing the effects of potential
system (i.e., product and platform) cost drivers, there are a number of
factors to consider: first, the proposed modification to the treatment of
the 14 general system characteristics would have the effect of easing, not
tightening or adding, constraints on the contribution of a given GSC to
determining the value adjustment factor. Intuitively, then, the fact that
no improvement in correlation of the adjusted function point count with
development effort and cost was realized would seem to be in spite of,
and not because of, the proposed multiplicative approach. This would
tend to point to inadequacies with the GSCs themselves, rather than the

proposed new approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Another consideration is the amount of time which has elapsed
since these GSCs were last revised. Ten system characteristics were
introduced with the original advent of function points in 1979. The
current 14 were established in 1984 and have been used unchanged ever
since. However, the software development environment has undergone
dramatic changes since that period, perhaps indicating a need to review
and revise the current GSCs.

As noted earlier, the 14 function point GSCs, when mapped onto
the eight of Boehm'’s 17 COCOMO II cost drivers which can reasonably
be considered system characteristics, correlate to only three of the
COCOMO II cost drivers. This suggests (1) that there are likely effort and
cost driver factors which are not captured by the 14 existing GSCs, and
(2) that the function point GSCs may not all be substantially
independent of one another. There may as well be significant interaction
effects among cost drivers. As previously cited, for the 299 software
development projects discussed above, which served as the data source
for Finnie, Wittig, and Desharnais (1997) and in large measure for the
research described herein, Finnie, Wittig, and Desharnais found that “it
appears that there is considerable covariance and that a number of the
factors [the 14 GSCs] are difficult to separate.” These factors further

underscore the need to review and revise the existing GSCs,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

notwithstanding the fact that doing so will likely render unusable (for
cost estimating purposes) some of the data which have been
accumulated for past development projects.

From discussions held with various experts concerned with
software size measurement and software development cost estimating
while defining and carrying out the research described herein, it is the
sense of this researcher that two obstacles to improving the use of
function points as the basis for cost estimation and prediction are: (1)
the extreme reluctance of individuals and organizations engaged in
software development to provide data for research, even with anonymity
assured; and (2) the lack of dialogue between the proponents of the
function points approach and the developers of COCOMO 1II. It is the
opinion of this researcher that IFPUG (and perhaps similar organizations)
could serve as catalysts toward a freer flow of data to support research
while ensuring the security of business sensitive information. A teaming
of IFPUG with the academic community may help; IFPUG has
established an Academic Affairs Committee and has begun making
overtures to academic institutions where there may be an interest in
pursuing research in this area. It is also the opinion of this researcher
that Boehm’s team at the University of Southern California should either

modify COCOMO II to accommodate function points directly as a size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metric or develop a separate function points variant of COCOMO II,
rather than requiring the use of an industry-average “conversion factor”
to equate function points to lines-of-code prior to applying the cost
estimating model.

Limitations of the Research

The most serious limitation of the research is the unavailability of
data which represent a cross-section of modern software development
efforts. As indicated earlier, of the 301 projects from which data were
used in this effort, 299 were provided by the same source. The 299
development projects were completed within a total of only 17
organizations over the period 1982 through 1990. All were essentially
management information system (business) applications (Desharnais
1998). The remaining two projects were scientific/engineering
applications from a single organization and were completed in 1997
(Boland 1998).

It has been the experience of this researcher that software
development project data of the type needed to complete research of this
nature (i.e., software development effort and cost) are extremely difficult
to obtain. Gordon Lundquist, the Director of Applied Programs for the
International Function Point Users Group (IFPUG), advised this
researcher that, even though he represented a sanctioned, recognized

industry group, he had a great deal of difficulty obtaining such data,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

even with guarantees of non-attribution, from [FPUG member
organizations. The concern within the industry, which is quite
competitive, is one of providing even the slightest insight by a competitor
into one’s costs or productivity. The problem is even worse for
individuals seeking to obtain data for research. Also as indicated above,
perhaps a stronger alliance and better cooperation among IFPUG, its
member organizations, and the academic community are needed.
Avenues for Further Research

The results obtained herein indicate a number of areas where
further research may be appropriate and useful.

First, provided the necessary data can be collected so that a cross-
section of modern software development projects is represented, the
approach proposed above should be applied to such data. This will serve
either to demonstrate that the proposed approach has merit or (as is
more likely the case) to reinforce the conclusion that the function point
general system characteristics do not incorporate all of the system
characteristics which drive effort and costs in modern software
development projects.

Whether or not similar results are experienced in such a
reassessment of the proposed approach, the function point general
system characteristics, as currently defined, should be carefully re-

evaluated and ultimately redefined as appropriate to ensure (1) that they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

are substantially independent of one another and (2) that they
adequately capture the effects of all system (i.e., product and platform)
characteristics which drive effort and therefore costs.

The research effort described herein accepts the procedure for
determining the raw, or unadjusted, function point count as a “given,” in
order to focus on the effects of the general system characteristics upon
the final (adjusted) function point count as it relates to development cost.
In actuality, the techniques used to determine the raw function point
count can, and should, be subjected to the same type of scrutiny. After
all, Albrecht, by his own admission, arrived at his method for calculating
function points by “debate and trial” (Albrecht 1979, 85). Abran and
Robillard (1994, 172) point out that function points are an algorithmic
metric, and therefore have the problems inherent in any algorithmic (or
synthetic) metrics system. They observe that algorithmic metrics are
difficult to interpret and state that “the reasons for the assignments of
specific values (weights) are not clear.” Additionally, Finnie, Wittig, and
Desharnais (1997, 43) advise that “the weighting scheme used in
Function Point Analysis [for calculating unadjusted function points] is in
need of some reassessment.”

Clearly there are factors beyond system characteristics which

affect effort and costs, specifically personnel and environmental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

considerations. While system characteristics obviously pertain to the
specific system under development, personnel and environmental factors
are characteristics of the software development organization. A proposed
avenue of research is to seek to develop guidelines for use by individual
organizations in assessing their “organizational characteristics” which
would attempt to capture personnel and environmental considerations
which affect development effort, in order to complement the assessment
of the effects of system (product and platform) characteristics. To some
extent, the need for incorporating such organizational considerations into
one’s cost estimating approach is reflected by the emphasis on the part
of several authors (Kemerer 1987, 427; Matson, Barrett, and Mellichamp
1994, 284; Garmus and Herron 1996a, 141, and 1996b, 65; Jones
19964, 3; Gaffney 1996, 8) on the importance for an organization to
“calibrate” its function points-based cost estimates to its own historical
data. However, since conditions may vary from project to project within
an organization, an approach for assessing the organizational
characteristics pertaining to a given software development project, such
as is suggested here, would provide a tool for use by organizations in
accommodating such variations. In view of the nature of the COCOMO II

Personnel and Environmental cost drivers, it is likely that significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

work in this direction has already been accomplished by Boehm and his
team at the University of Southern California.

Even though the function points approach in general and the
method of weighting the counts of the five basic entities have been the
objects of criticism, the technique as currently applied still enjoys
widespread acceptance. What may be needed is for COCOMO II or a
variant thereof to be revamped so that unadjusted function points are
used as the principal software size metric, rather than retaining the
required lines-of-code conversion. In addition, the burden should fall
upon IFPUG to explore alternatives to the current weighting scheme used
in calculating unadjusted function points and to approve and promulgate
changes to existing counting practices thus identified when it makes
sense to do so. Closer dialogue is needed between Boehm’s team and
IFPUG than has existed to date. Particular consideration should be
given to the possible advantages of replacing the current additive model
for calculating the value adjustment factor with a multiplicative one,

similar to that described herein.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

REFERENCE LIST

Abran, Alain, and Pierre N. Robillard. 1994. Function points: A study of
their measurement processes and scale transformations. Journal
of Systems Software 25: 171-184.

Albrecht, Allan J. 1979. Measuring application development productmty

Proceedings of the IBM Applications Development Symposium,
GUIDE/SHARE, Monterey, CA, October 14-17: 83-92.

Albrecht, Allan J., and John E. Gaffney, Jr. 1983. Software function,
source lines of code, and development effort prediction: A software
science validation. IEEE Transactions on Software Engineering
SE-9 (November): 639-647.

Bernstein, Lawrence, and Alex Lubashevsky. 1995. Living with function
points. CrossTalk: The Journal of Defense Software Engineering 8
(November/December): 14-18.

Boehm, Barry W. 1981. Software engineering economics. Englewood
Cliffs, NJ: Prentice-Hall.

. 1997. COCOMO II model definition manual, version 1.4. Los
Angeles: University of Southern California.

Boehm, Barry W., Bradford Clark, Ellis Horowitz, Chris Westland, Ray
Madachy, and Richard Selby. 1995. Cost models for future
software life cycle processes: COCOMO 2.0. In Annals of software
engineering special volume on software process and product
measurement, ed. J.D. Arthur and S.M. Henry. Amsterdam: J.C.
Baltzer AG.

Boland, Dillard. 1998. Computer Sciences Corporation, Lanham, MD.
Telephone conversation with author. April 22.

Conte, S.D., H.E. Dunsmore, and V.Y. Shen. 1986. Software engineering
metrics and models. Menlo Park, CA: Benjamin/Cummings.

DeMarco, Tom, and Timothy R. Lister. 1987. Peopleware: productive
projects and teams. New York: Dorset House.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Desharnais, Jean-Marc. 1988. Statistical analysis on the productivity
of data processing with development projects using the function
point technique. Masters thesis. University of Quebec at Montreal.

. 1998. University of Quebec at Montreal. Function point data.
Electronic mail dated April 21.

Downie, N.M., and R.W. Heath. 1974. Basic statistical methods. New
York: Harper and Row.

Dreger, J. Brian. 1989. Function point analysis. Englewood Cliffs, NJ:
Prentice Hall.

Finnie, G.R., G.E. Wittig, and Jean-Marc Desharnais. 1997. Reassessing

function points. Australian Journal of Information Systems. 4
(May): 39-45.

Gaffney, John E., Jr. 1996. Software cost estimation using simplified
function points. Proceedings of the Spring Software Technology
Conference. Ogden, UT: United States Air Force Software
Technology Support Center.

Garmus, David, and David Herron. 1996a. Measuring the software
process: A practical guide to functional measurements. Upper
Saddle River, NJ: Prentice Hall.

. 1996b. Effective early estimation. Software Development (July):
57-65.

Giles, Alan E., and Dennis Barney. 1995. Metrics tools: Software cost
estimation. CrossTalk: The Journal of Defense Software
Engineering 8 (June}): 7-10.

Jamieson, Paula, immediate past president, International Function Point
Users Group (IFPUG). 1997. Telephone conversation with author.
September 29.

Jones, Capers. 1991. Applied software measurement: Assuring
productivity and quality. New York: McGraw-Hill.

. 1996a. Applied software measurement: Assuring productivity
and quality (second edition). New York: McGraw-Hill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

. 1996b. Estimating and measuring object-oriented software
(draft). Prepared for publication in American Programmer.
Burlington, MA: Software Productivity Research, Inc.

Kemerer, Chris F. 1987. An empirical validation of software cost
estimation models. Communications of the ACM 30 (May): 416-
429.

. 1993. Reliability of function points measurement: A field
experiment. Communications of the ACM 36 (February): 85-
97.

Kemerer, Chris F., and Benjamin S. Porter. 1992. Improving the
reliability of function point measurement: An empirical study.

IEEE Transactions on Software Engineering 18 (November): 1011-
1024.

Keyes, Jessica. 1992. New metrics needed for new generation. Software
Magazine (May): 42-56.

Low, Graham C., and D. Ross Jeffery. 1990. Function points in the
estimation and evaluation of the software process. IEEE
Transactions on Software Engineering 16 (January): 64-71.

Major, Melissa L. 1996. A qualitative analysis of two requirements
capturing techniques for estimating the size of object-oriented
software projects. Masters thesis. Clemson University.

Matson, Jack E., Bruce E. Barrett, and Joseph M. Mellichamp. 1994.
Software development cost estimation using function points. JEEE
Transactions on Software Engineering 20 (April): 275-287.

Mukhopadhyay, Tridas, and Sunder Kekre. 1992. Software effort models
for early estimation of process control applications. IEEE
Transactions on Software Engineering 18 (October): 915-924.

Navlakha, Jainendra K. 1990. Choosing a software cost estimation model

for your organization: A case study. Information and Management
18: 255-261.

Oskarsson, Osten, and Robert L. Glass. 1996. An ISO 9000 approach to
building quality software. Upper Saddle River, NJ: Prentice Hall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Rehesaar, Hugo. 1997. ISESS '97 FSM workshop. Electronic mail dated
February 4.

Srinivasan, Bala, and Geoff Martin. 1994. MONSET - A prototype
software development estimating tool. In Proceedings of the Third

Symposium on Assessment of Quality Software Development Tools
in Washington, DC, June 7-9, 1994, by the IEEE Computer Society

Technical Committee on Software Engineering. Los Alamitos, CA:
IEEE Computer Society Press, 70-82.

Symons, Charles R. 1988. Function point analysis: Difficulties and

improvements. IEEE Transactions on Software Engineering 14
(January): 2-11.

Wellman, Frank. 1992. Software costing. New York: Prentice Hall.

Whitmire, Scott A. 1995. An introduction to 3D function points. Software
Development (April): 43-53.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

APPENDIX A

COMPARISON OF COCOMO II COST DRIVER

PROVISIONAL VALUES WITH CORRESPONDING VALUES

OBTAINED USING PROPOSED EXPONENTIAL FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a3

B eax3 yBiH Kiep Y8 feujwoN Mo
g+ =y T+ =Y L+=Y 0=Y% b-=y
. . . 0

ir ix

[} n Hx
I * I +]
g an 8 ,
=4 > -

gyt

pLl = U- e
Il ONOD0D ShL=u-e
11OW0J00
X1d0
YO Kiop ubiH feuiwoN Moy yBiH Asep Y6iH feujuioN Mo Mo Ksap
4= 14=9 0=% 1= z+ =Y b=y 0=y -=y -=
; ; 0 : : : 0
N b o oo 20
m _ I N O T PR P PP PETRPPPRE mq w $'0
..................... m. ?O n n
a°.P “:l.' w]mF.P “:H m— m 8 °.°
1l OHO000 - m %01 wowosoo | i S - vo
..................... my .. 90 .” ‘
m BT e n P
..................... _.....v............ n F “,.».,..........M.............:..m.............y. N.P
: . 4! , : : Vi

A3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

naoa

yBi4 Kiop ubiH JeujwON MO ybiH eaxa uBiy Atep ubiy jeuiwonN
Z+ = te=y 0=y b=y £+ =9 z+ = pe=y 0=Y
. : 0 - : o
..... z0 : Zo
v
..................... m P .w PITSN ?.o ” “ o
_ m m) I .u w mo
T B R _ “ 00 R TIE m ! |
WOW0d00—+-| | i : a0 Il ONODOD -+~ t m 80
w . w [N 1
....... ' PR IERITIT I !
................ Frovo R 1! AT b
. vi : . 9
T0Ad Ol1S
(L] i Kiep i {eUION yBiH Jep ybiH feujuloN L mo7 Aiop
€+=y AR be=)y 0=¥ T+ =y ez 0= b=y .=y
m : 0 :
.................... m DI P T m- e ree s . e N.O
.................... Lm...,,,., e e m—. . ’.o
.................... 00
TGl mua ‘ : 0L s U
1| ONODOD ~+~ : Il ONODOD -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

UBiH A1op uBiH

................ S SUUUUU RN SUUUUU
swosus] [ST o s T
I ONOD00 —- m m

Mo Asop
e+ = I+=Y 0=) ==y =Y

0

(4

(4]

9'0

80

3

uBIH A1op WBH
e =y

|BUIWON
(SR | 0=

'lwlumyﬂlpnb H m

N ONO300 -

v'o

90

m Al
. i vi
dX3av NOOJd

yBiH Atop ubiH leujwioN Mo mo Lap ubiH Liop ubiH {eujwoN #o #mo7 Ao

ze = Lo 0= o= z 2=y te=y 0=Y o=y z =Y

: ; m 0 : : m 0
................ : .. 20 wm'w 20
R TITITE STTT RS oo v0
| SRR w m' n” 90

980 = U 280 =u-a- ' : : .

Il ONODOD ~+- 1l OWO200 = : s LU

................ \
............... T T K21
....... -
: . . 91

dvdd

dvJVv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

ub enxg B AloA Bl

{BUIWON MO
gr=N 4= Le=Y 0= b=y

Mo Ko

z=

T 780=U-=-
1 ONOD00 ~+-

0

2o

¥0

90

80

3

[

bl

690=U-a-
Il OWOO0D -+~

ubiH Asop
=

UuBiH

{BUjWON

7001

bl

uBii4 oA uBi4 leupwoN Mo
Z+ = Le=Y 0=Y L=y

Mo AuoA
¢ =)

16°0= U
1 ONODOQ -+~

(4]

| 4]

90

X3alL

mo.oﬂﬂ.r
It ONOD0D~+-

Ui Aiop
2+ =

0=

dX3d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COCOMO Ii
-n=081

-

k=+2
Very High

k=+1
High

SCED

=
Nominal

k=-1
Low

k=-2
Very Low

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

APPENDIX B

PROJECT DATA FOR 301

SOFTWARE DEVELOPMENT PROJECTS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

99

109 0 3 0 ¥ |3 0 g £ g S 0 0 0 S 189 13 eb
ecl 0 0 0 € 0 1 0 0 S 0 [) 0 \ [ZL Lye 113
gie 0 I 0 0 0 1 0 0 S 1 i i [S 18¢ 6z19 1y
8.2 ! 0 1) 0 1 0 z S [z [)] 0 S 92¢ 9065 oy
§02 z 0 [(4 } S 0 v 1 0 z v 0 S 0zz [X2 3
6ct 0 0 0 ! 0 0 0 0 1 0 0 I 0 | 102 0z8 [
£201 £ 0 0 £ 3 2 ¥ 0 S g 0 S 0 [£00} 0£9Z1 I
|80z 0 0 0 ¥ 0 0 0 0 S 0 0 0 0 [yol 0tel [
|zsr 0 1 0 0 0 £ 0 2 S 0 0 € 0 S 089S 5989 56
Jete 1 0 0 € 3 1 0 € S 0 0 z 0 s 19¢ 1859 e
(T ! 0 0 2z z 0 0 0 0 0 z z 0 0 SL 092 ce
oy 0 0 0 1 0 0 0 0 [0 0 0 [} S 095 000¢ z
08¢ 0 ! € | 4 € 0 S | 4 S | 4 0] 0 g Lee 0501 \e
114 } 0 |4 }) [4 0 [4 0 0 0 S 0 [4 11 0048 0t
Srt 0 0 0 € |4 0 13 [4]] £ y 0 g 11 00Lb1 8z
€8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 ool [T3
ZZv 3 3 € 1 € € 3 1 [3 z 0 1 0 3 ery £6yLl 1z
[T 0 0 0 0 1 0 0 0 Zz 0 0 0 0 ¥y ¥l 8szl [53
oci 0 0 0 0 0 0 0 0 S 0 0 0 0 € 091 108 [
(773 0 0 £ £ ! S 0 1 € [0 g 0) (123 ¥152 (3
Y% € 0 i £ 1 £ 0 ¢ 0 €] £ 0 0 (124 029y X3
ol ¢ 0 } \ | £ € 3] € 0 ! 0 [[veLl 44
12 ¢ 0 3 ! 1 i £ ! S ¢ 0 £ 0 £ 602 5068 12
[0 0 £ £ ! £ 0 1 1 A 0 ¢ 0 0 £0} 01201 0z
L6l 3 0 1 ¢) [0 I 0 € 0 £ () 0 [20£9 6l
M 0 0 i i ! S S € S S) S 0 S SL [8
eIt 0 0 ! € | S 0 3 0 € 0 s [0 voe oLvs Ll
SeY 0 0 £ £ £ £ € £ S b 0 £ 0 £ Lyy 018 13
[T 0 0 ! £ | S 0 ¢ 0 £ 0 S 0 0 66 cLzy S
201 0 0 1 t i S S £) S 0 S 0 [} L0} 1611 ri
lozy 3 0 3 [0 [€ £ [£ S [0 [sl¢ pieol £l
lLse S 0 0 S i S € S S t 0 1 0 [(13 \ZLL 43
€52 0 0 € € 1 € 0 1 i l 0 i 0 0 o0ze 806Y il
162 0 0 b g £ £ s I S i 0 ¢ 0 £ V13 $669 ol
891 € 0 | i b £ G £ S £ 0 { 1] S 6Ll oyoe 8
£02 2 0 0 3 2 z 3 S S [! S 0 2 £6b 1202]
vz z 0 0 0 € £ [4 ¥y } 1 | 3 3 S 1% eriz L
¥4 |4 0 0 | [4 4 | 4 14 S 3 3 [4 0 S 114 5698 9
182 0 0 0 [z ¢ 3 [[! I) 0 S 262 628¢ S
»02 0 0 I ! 0 2 ¥ i S 0 € z 0 v Jt23 €16 ¥
68 0 0 i 0 3 0 [[0 0 3 Zz 0 S 208 508 €
LSL 0 0 i [0 0 € z S I £ z 0 S 20k 6957 z
202 | 0 1 £ 2 0 € v S 3 £ £ 0 S 02 Z6LS I
POJIY | pid DSO| EL# OSO(Z1# OS] LI# 08O 0l#089) 6#0SO| 8#JSO| /#DSO(9#0SO| SKOSO| Y#OSO| e#OSO| Z¥OSO| I¥0SO| ddn |(yw)woyg|oN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

€92 3 0 €] 0 [4 } [€ 0 0 0 0 [2 80 [[1447] 08
[4:1) 0 0 0 0 0 € 0 0 0 0 0 0 0 } oz 1529 se
682 0 0 0 0 0 [4 0 0 0 0 0 [4 0 0 114 6912 ¥8
862 0 0 0 € 0 . | 0 0 } 0 0 € 0 0 4] 29604 €8
13:13 € [4 4 [€ 14 {4 € (4 0 0 € 0 0 6Ll SSiL (4]
A1 4 | 0 9 [0 [1 0 0 3 0 0 I 0 0 88s 6eeTl 19
208 4 0 0 0 0 4 [4 0 € (4 0 4 0 0 €004 80952 08
oLl 4 0 4 0 0 £ 0 0 0 0 0 0 0 € LeT €808 6L
86 € 0 14 4 0 S 0 0 0 l 0 0 0 0 14} 14013 8L
(413 i 0 [4 0 0 S 0 [0 0 0 4 0 0 144 6S€9 7
osy S 0 14 0 0 14 € S] 0 0 4 0 [4 esy LotEL oL
96¢ [4 0] 3 4 4 0 0 0 0 0 € € v iy 08€es -3
€58 3 3 4 € 3 14 0 0 0 0 0 3 [4 S €004 9168l yL
828 [4 0 3 i [4 [4 0 0 0 0 0 € € 1 4 [4%:) ool €L
862 0 0 0 0 0 0 0 0 0 0 0 0 0 0 osy ol el
(414) 0 | 4 0 0 S 0 0 0 0 0 S 0 14 8ze 6901 7
Lot S 0 € 1 4 0 S € S i S 0 S 0 S 601 ¥69.9 0L
804 0 0 14 | 0 {4 0 0 0 0 0 0 0 0 Ssi 0sor 69
(443 0 0 i 0 0 S 0 0 0 } 0 I 0 0 L91 1141 89
$6 S 0 0 € 0 € 0 0 0 0 0 € 0 0 0zt 155¢ L9
3:]] 0 0 [4 i 0 € 0 0 0 0 0 9 ¥ v 141 1086 99
ot € 0 0 0 0 i 0 14 4 0 € 4 € 1 4 144 0912 $9
969 € l € € 0 S 3 1 4 € € 3 4 0 € 699 14434 o
20¢ 3 0 0 0 0 € 0 0 i 0 0 0 0 0 114 ¥59L £9
001 | 0 | {4 0 4 0 0 0 0 0 0 0 0 :14) (4114 {4:)
141) S 0 0 0 S {4 0 0 0 0 0 4 0 0 [44) {4444 19
114 € 0 0 3 < [4 0 0 0 0 0 0 0 0 a6t 926s 09
88l {4 0 4 0 0 {4 0 0 0 0 0 l 0 0 192 85ob 6s
L9 |3 0 0 | [4 € (4 € € 4 0 € 0 0 802 ¥olZl 8%
08 0 0 0 0 0 {4 0 0 0 4 0 0 0 0 80} 9521 LS
10l 0 0 0 £ € [0 0 0 0 0 0 0 0 6cL 6Ly 99
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 okl {4444 8s
:11] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 €81 6y0S ¥s
11 s 0 4 [i € 0 0 0 0 0 4 0 0 1) ozey €8
8L ' 0 4 0 {4 (4 0 0 0 0 0 0) 0 80} 08ie (4}
8s 0 0 4 0 0 4 0 0 0 0 0 o 0 0 14} 9zsi IS
sS 0 0 0 0 0 4 0 0 0 0 0 0 0 0 (4] 14413 0s
144 S 0 0 0 0 e 0 0 0 0 0 0 0 0 L8l yost 14
€Ll 0 0 0 € 0 € 0 | i 0 0 € 0 0 144 yioy 14
{44 § 0 4 0 0 € 0 y (4 0 0 € 0 1 4 852 SESS A4
(24 4 0 4 0 € 4 1 4 € S Z 0 o 0 4 8¢ 0L98 14
968) 0 0 0 € S S S S | 4 S 4 .4 € 158 crios '14
LY S 0 {4 0 0 4 {4 0 [4 0 0 0 0 0 699 yeclel 144
PO4Iy | vin SO EI# ISO| TI#ISO| 11X OSO[01X OSO| 6#DSO| 8#0S9| (#OSO| 9#0SO| S#OSO[t#0SO[e#0SO| ZH#OSO| 1#98O[ddn |(yw) Uoyj3|oN wejosd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

e T 0 € 1 S 0 t 0 2 3 z 0 0 AT} 28ee 6zl
80} 0 0 3 ! 0 € b S € € z 0 € €zt e 8zl
m 0 0 € ! 0 F z s € € z 0 € 28l 2181]}
set 0 ¥ 0 0 0 0 0 0 0 0 0 z s LLL 0EvZ 8zl
612 v 0 0 0 0 0 0 s 0 0 0 z s 0Lz 2ess [
Ll 0 0 0 ! ! 0 0 s 0 0 0 0 s 88l zshe vl
L1 0 0 0 ! b 0 0 s 0 0 0 0 s oLl 0siz 34}
oL 0 0 0 ! } 0 0 S 0 0 0 0] 00k €8y 22l
£25 v 0 0 [/ 0 0 b] Z 0 € 0] 898 S0202 {12t
(153 1 0 0 0 0 0 1 s 0 0 [l 0 § 082 z66¢ 0zl
196 € 0 ' ¥ v 3 z s b 0 z [v 196 €00LL__|B})
6it 0 0 Z 0 [0 0 0 0 0 0 0 0 €Ll b28€ 8l
ee 0 0 4 0 ? 0 0 0 0 0 0 0 0 8ze 5089 L1
e 3 0 F 0 € (] 0 0 0 0 0 0 0 oLy 8599 (9l
191 0 0 Z 0 2 0 0 0 0 0 0 0 0 0zz 8008 Sii
L0t 0 0 [£ [4 0 0 0 0 0] 0 0 yel (12 bl
e € ¥ z € 0 0 0 0 0 € [2 2 el CELE elt
s 0 l 0 0 0 l t b 1 0 0] z 08 £504 zi
08 0 0 0 0 0 0 0 0 0 0 0 0 i 58 zisl i
is8 S 0 € s € 2 v s s z s 0 s 0z8 viyoz [oil
€8 € 0 0 0 v) 0 0 0 0 0 0 0 L 9961 80l
e1e S 0 0 s £ v € €] s s 0] e ogey _ [eo0l
L] £ 2]) ¥) S S s s v s 085 80€st 201
(£ 0 0 0 0 [0 0 0 0 0 0 0 0 8L (4147 80}
it 0 0 0 b 3 0 0 0 0 0 0 0 0 891 60sy [sol
65¢€ 2 0 € v] v € s v 0 s 0 € 82¢e v88L ol
it 0 0 [[] 0 0 0 0 0 y 0 0 €9t 1222 jeob
94 € 0 €) D 0 0 0 0 0 € 0 0 (12 0660l |20l
192 € 0 5 3 v (] € 0 0 0 £ 0 (4 162 yreL 104
il 0 0 3 0 z [] 0] 0 0 0 0 0 €st 9952 00}
[€ 0 0 0 0 v s s € £ 0 0 b 949 6isL 68
e ¥ € 2 0 [[2] 0 b s € £ e £62¥ 88
] 1 3 ? 0 [0 0 0 0 0 0 0 0 (11} Zvee 8
6568 v 0 [] S [2 S ¥ 0 S 0 ¥ 0z8 olLys [06
(133 0 € b 0 1 0 0 ' 0 0 0 0 0 1€€ 9269 [s8
288 € 0 € t v [] s s 0] 0) 86L Lieye [v8
1ze F 0 3 v] v ¢ S v 0 S 0 3 262 6o €8
0s1 S 0 0 € S [v 3 i € s s s el coLel |[e8
1) 0 0 0 €) v) v v € v 0 € 558 si€8 18
(112 3 3 Z 0 0 ’ s S € 0 z 0) Ly 8v09 08
vrl 3 z 0 } 0) € } l 0 0 b £ vil gty |es
18 £ 0 2 0] 0 0 0 0 0 § 0 0 8e2 vL0L (]
092 s 0 0 0 s 0 0 0 0 0 0 0 0 Lve 108L 8
POdiv | ¥ ¢ i _ddn__ [(yw) poy3| oN peford

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

1443 4 0 i 0 0 0 14 0 S 0 0 0 0 € (413 :1t44 (44
86¢ 4 0 [4 (4 [4 € 1 4 4 S [4 [4 [4 0 € 4 §8261 [71)
11:4 | 4 14 3 € 0 14 | 4) S S € S 0 S 6c€ 66101 ol
0ze 0 0 [4 [4 0 0 14 € S € {4 S i 4 [:144 988 (1213
€81 0 0 {4 {4 0 {4 0 € 0 {4 {4 € 0 0 144 000L 891
161 [2 4 [4 0 14 14 L S € 4 € 0) €6l €0s6 J1:13
114 € v [4 € 3 14 14 0 4 3 4 {4 € 3 L0Z gtes o9l
(213 4 0 0 3 0 0 3 € S 3 0 3 3 € 1) 0oZy S0l
1] 0 0 0 i 0 0 3 0 S 0 0 0 0 € 243 cLey 1413
99t 0 0 4 0 0 l 14 € S 0 0 {4 {4 S 134 cees €81
134 S 0 € 0 0 € € € S € [4 14 0 L4 162 6689 4:13
714 € 0 € 0 0 0 | 4 € S 3 {4 {4 0 S 908 "]4:14 19
(134 4 0 € [0 {4 14 14 S € (4 4 0 S 1344 Sel6 081
L0t € 0 < 3 3 € 0 14 o € € € i 3 11 wLiZ est
oS} 0 0 3 b 0 [€ € S 0 0 0) S 88! Ly8 esl
e 0 0 {4 4 0 y € 14 S 0) 4 £ £ 0£T 00y LS
§S2 4 S € € € {4 € | 4 S 0 € 0 (4 4 Wwe (1444 13
L18) S S 4 [4 4 S) S S (4 0 1 4 S [444 0508 SS4
L5 4 3 {4 0 i {4 4 [4 S Z 0 [4 0 S vt Sevl ¥st
669 0 0 € 0 0 € € [4 S U 0 i 0 S ¥eL [4:114 €51
184 0 0 € € 3 € | 4 S S € € € 0 S (4:13 169 413
0ee 0 o (4 € 0 € 0 € 0 {4 ‘ ' 0 | 4 2°14 Lesyl st
st] 0 Z]] 0 Z | 4 S 4 (4 Z 0 S 1443 01l 0sl
114 € 14 14 1 4 € € 4 | 4 4 € 1 4 S € | 4 144 #6861 eyl
262 € S € €) 4 € £ S b 0 4 0] 262 Sor9 114
08t £ {4 y 14 [4 0 € € S [4 € € 0 S €L8 SiL8 1143
€6] 4 1.4 [4 0 0 0 14 € £ € € 0 14 -] ors 214
6014 € € 14 1 4 {4 l 14 1 4 S [4 € € 0) 1413 cele 143
052 € {4 ¥y Z 0 l € € 14 4 € € 0 14 €62 0815 144
162 £ 0 y [4 0 {4 0 0 0 € € € 0 0 6yt LeVE 114
ove) 0 [4 € 0 [4 0 0 0 14 € | 4 0 0 (414 45144 (44
LS 1 4 0 4 [4 | S 4 € {4 € £ € 0 [4 ois €L6h1 143
0L € 0 € 0 S € S v S € £ € b S [4:1:) 088§ ovl
$69 € 0 € } 0 y $ 1 4 S € € € 3 S 299 098¢t 6el
[{14 14 0 {4 [0 14 € € € S € € € 1 4 i8¢ oovi 143
yeol S 0 14 3 0 € € L4 S € [4 4 3 € 443 oveeT L€}
082 14 0 [4 0 0 € € y S } £ €)) €82 0082 1214
14Y:] S 0 € 3 0 y € 4 S € € € 3 S £8S 0zse sel
orZ € 0 € 3) S € 1 4 S € € [4 0 S 744 1608 yel
002 J 0 € € 0 14 [4 € 1 4 1 4 € 14 0 € 802 14134 €El
rit | 4 0 € S 0 S 0 U 0 14 € S 0 0 €8l ¥s8L ZeL
g6l 1 4 0 € € 0 S 0 {4 0 4 € [4 0 0 134 L90¥ 213
L£2 3 0 € 3 0 | 4 14) 4 1 4 € S 0 {4 §ST Liey oet
PlOdJv | ¥1#0SD| Ci# OSO| ZI#DSO| LI OSO| 0L1#ISO]| 6#0SO| ¥ OSO| L#0SO| O¥ISO| SHOSD| ¥ OSO| €#0SO| Z#OSO| I#OSO| ddn {(Yw) Loy3) oN yefasd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

(7] 0 0 [3 | 0 3 0 2 0 z £ z 0 0 £9 0LL 61z
20 0 0 0 z 2 0 1 0 £ 0 0 0 0 £ 69 LLbl e
oL¢ 0 0 0 0 £ I 1 0 [0 2 2z 0 [oSy 2265 (1¥4
er 0 z 3 € 2 € v £ S v v ¥ € £ 66E 126¢ 3%
e 0 0 3 1 0 € 0 ¥ [z £ z 0 0 £ 680 1z
191 0 0 Zz 0 0 I 3 0 S 0 0 0 £ € €22 [T1a2 01z
S 0 0 1 0 0 i 1 ! S i ! 0 0 2 [£69 602
Si¢ 0 0 [0) 2 3 ' S z (2 ! 0 S 6c€ 6509 802
95¢ [3 0 1 0 0 £ 1 [) S 0 0 1 0 £ 6cy 2628 202
08 3 0 } 0 0 0 i ! S 0 0 i 0 £ bil £091 902
\ZL (3 0 1 0 0 £ 1 z v 0 0 3 0 € oFl £852 502
Syl 3 0 i 0 0 3 1 0 S 0] i 0 3 ol 0252 ¥0Z
25 z 0 i [0 3 1] S 0 0 t] 2 v GiS1 £02
094 z 0 0 0 0 3 [) 0 0 0 0 1 0 0 (173 Lyoe 202
[T} 3 0 3 0 0 {3 b 0 S 0 0 ! 0 z S9L gTLe 102
otl 0 0 0 0 3 1 0 £ 0 0 0 € 0 € m olze 002
Y3 y 0 1 ! 0 £ 1 z S 0 0 3 [} 2 orZ 9262 68l
loos 3 0 I 0 0 2z i 0 S 0 0 1 0 2z Sel ol8} 86
202 £ 0 1 0 0 3 1 0 S 0 0 ! 0 Z £62 Zive 161
08 ¥ £ ¥ 3 0 z 0 vy 0 €] ¥ 0 z [6085 26}
8 ¥ £ ¥ 3 | 3 0 i 0 ¢ z € 0 0 zol 005¢ [T
Ll z 3 2 € 0 ! ¥y € S z 2z £ 0 S oLl 009y 6l
981 3 € ¥ 3 0 i ¥ z S € z 3 0 S 151 zis8 £61
128 3 3 [£ 0 t y £ S € z £ 0 S zIe 950 Z61
(124 z z € z 0 0 ¥y £ [! z £ [) S 952 1861 16l
) £ € 2 £ £ 1 z ! i 3 z 3 [) z 26 9662 061
vZ) ¥ 3 ¥ 1 0 i v 3] 3 3 € 0 g 2 ¥15¢ [
20 3 v 2 3 0 0 2 3 S z z 3 0 [88 2062 88l
Jozi 0 Z Zz 1 0 z v ¥) F3 1 (3 £ ¥ [Z1} ocie 281
lozs 0 F 13 l 0 z] € S € 0 2z 0 ¥ 184 1188 981
lest ¥y y 14 £ £ 4 £ 14 e [e 4 14] 0i¢ 12414} el
10€ 0 £ 3 0 0 ¢ ¥y v [£ 3 £ 0 S 206 verbL [v8L
¥l 0 0 1 0 0 z 0 1 0 0 1 1 0 0 ¥0L YA £81
z5) 0] 1 0 3 0 3 3 S o b 1 0 3 £81 6062 z8l
%0y 3 0 3 1 0 S i z S I 0 £ 0 3 viS sezll 181
zis ¥y 2 0] 0 0 Z 0 [0 0 3 0 S 685 tizst [osi
zL9 € 0 € £ £ [0 [[0 £ S 0 S 0¥9 0086 [
(123 0 1 [3 S 0 0 0 i S 0 0 0 0 S 882 0928 9Ll
0l 0 0 0 0 0 0 0 0 s o 0 0 0 S ovl SSiL m
802 0 0 0 0 i 0 0 0 [0 0 0 0 0 £62 565 m
0l 0 0 0 0 0 0 1 0 S 0 0 0 0 0 ovl ovs [
s (4 0 1 I I [¥ ! g i 0 z 0 by 265 00t8 [
I 0 0 3 z 0 3 z z S 0 I 3) S Uz L6 P
Piog yi# 069| €i# OSD| ZI# OSO| 11# ISO[01# ISD| 64 0SD| 8¥OSO| /#OSO| S¥OSO| S#OSO| ¥#OSO| E#OSO| Z#0SO| 1#0SD| ddn [(yw) wou3oN wefaid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

20 0 0 7 S 0 0 o 0 0 0 0 ¥SE shzZL__ |8se
15 0 0 3 3 0 o 0] 0 0 [} 19 gLyl T3
Zil i 0 3 2z 1 2z I 0 0 0 0 i ol 8k20 982
001 0 0 2 2 0 0 0 0 0 0 0 0 [T 1656 952
S04 € 0 [z [(4 S 0 (] 0 0 i 102 8s0cz |¥S2
L 0 0 [3 0 o o 0 0 0 0] oLl 1£E9 £62
26 0 0 3 0 0 0 0 0 0 v 0 0 6zl £62y 8
28 0 0 2 3 5] 0 F3 0] 0 0 0 Sii 1y91 162
Sh1 0 3 1 F3 y £ S 0 0 € 3 0 1zl 1) 082
Sy 0 0) 0 0 0 0 0 0 | 0 0 [1.8l (13
m 0 0 (3 0 € 0 o [t [} 0 0 0 £04 [T [TZ4
69 0 0 0 (3 0 0 1 0 0 0 0 0 It yL0l e
oy 0 0 0 [0 0 [} [(] £ 0 0 or (T2 orT
0c2 F3 0 Z 3 F4 z € z 0 (3 3 0 192 [T She
[0 0 3 z 0 0] 0 0 0 0 0 ze g1ZLL w2
el 0 0 3 3 0 0 F3 0 0 0 0 0 681 orey ere
662 I 0 \ 0 z i S z t € 0 S L €840 e
201 0 0 0 3 0 £ S I 1 [0 g [[T+1 1%
v2Zs £ 0 2z ! [€ ¥ £ 0 ¢ £ [s 195k, [ovZ
SL 0 0 0 £ £ 2 S 1 0 £ £ S [T] 1921 [1X4
e i 0 ¥ S € g S € £ € [) 2 05z 929¢ X3
[$1) €t [[0 € S s 0 0 0 0 S €St 022 LeT
952 3 s €) € S o o v 0 [3 713 g6yzz_ [9c2
ot 3] 0 3 0 v S 0 Y S 0 S €L 8228 [T
(1 ¥ £ 0 0 S [S 0 0 [0 S 512 6598 (i3
£eL \ [0 y 0 4 S S] 0 0 S 61l oLYoe ez
08¢ v 0 £ £ [2 ¥ S z ¥ 2z 0 3 LL€ LeoL lzee
|es £ 0 2 0 3 £ £ £ £ y 0 z 202 1266 1£2
lesz ¥ 0 [3 € £ ! £ v € 0 z 182 zseL 0ee
|es2 3 3 z I € 2 S z > v 0] e £96¢ 124
20¢ 3 3 3 1 3 3 S z € 2 0 S 10e orse 822
ey [0 z 2 3 v S € ¥ € 0 S 3 L2y T4
113 ¥ 0 2 2 € £ 5 £ ¥ G 0 2 (312 [(143
lesz [0 2z 2z £ € S £ v £ 0 £ [T yole (173
ST 0] 0 £ 3 £ I 0 0] 0 S 862 vi6L (24
oce 1 1 0 € 0 0 S 0 0 € 0 S ¥ee 0008 £2¢
Lye € | 4 0 € € 0 S 0 0 0 0 S X214 1928 [444
[i 0 ! z 0 0 S 0 0 z 0 € 191 (T3 122
e 0 ¥y 0 3 0 0 S 0 [] 0 0 3 SO¥ 965¢ 022
cr 0 [] 0 0 S 0 0 0 0 0 0 S s £c8l 61T
los i i 0 1 i 0 S 0 0 ¥ € 3 »0L £0ET 812
£oL £ 0 0 3 € 3 z S [0 3 3 oLt 2602 Lz
X 0 0 3 3 0 3) 2z g z 0 [104 il 912
) d4n _ |(yw) voy3| oN wefard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

ize0r__[v 0 3 1 [IR (N (S R | 3 € 3 téc___ [oeeol _ [ioe
vseIz_Iv 0 £ } L £ € £ ! ¥ z ¥ 3 v bbb [evhiZ___|ooE
ok 1o 0 0 0 0 0 0 0) 0 0 0 0 52z [cotb 662
Zr o 0 0 0 0 0 0 0 R (A [0 0 0 98l |o0gs [eeZ
uL__ o 0 0 0 0 0 0 0 0 0 0 0 0 0 ell vsih_ |i62
80z___|o 0 0 0 0 0 0 0 0 0 0 0 0 0 zze___ |vvll |62
[123 0 o 0 0 0)) o o o) 0) [ELE v80e 562
g6l [0 0 0 0 0 0 0 0 0 0 0 0 0 0 2o |oest _ [ve2
oe 1o 0 0 0 0 0 0 0 0 0 0 0 0 0 895 |slez__ [e6e
sll o 0 0 0 0 0 0 0 0 0 0 0 0 0 882 [ecol (262
sy 10 0 0 0 0 0 0 0 0 0 0 0 0 0 899 [oser (162
ek lo 0 0 0 0 0 0 0 o~ 0 0 0 0 0 vl |sszz__ [08Z
WL |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0zL [soie [eac
Mz o 0 0 0 0 0 0 0 0 o 0 0 0 0 Ly vz [esz
z8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TS (1) 192
vy o 0 0 0 0 0 0 0 0 0 0 0 0 0 06} tos __ |oez
80 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 cv0l __ |eel¥ _ [s82
2 0 0 z z S g y ¥ £ 0 g 0 0 150 [eatg |veZ
oLk o 0 0 0 0 2 z v z____lo 0 0 g 0 cez_ |voeL [eez
€l 0 0 0 0 0 0 0 0 0 0 0 0 z 3 Yoo [2h [z
w2 0 0 3 0 } 0 0 0 0 0 g 0 g bhl 208z |10
or 0 0 z 0 0 ¢ 0 0 z 0 0 0 0 0 8s 88vz___ |08z
19 € 0 0 0 0 5 0 0 0 0 0 0 0 0 26) 8Lz
leei___Jo 0 1 0 } 3 0 0 0 0 z 0 i 0 et [ozzr__ [8i2
86s ___[s € 3 £ 1 z 0 z i 0 ¥ y £ g 585 [esivi |uiz
sz |r 0 0 s 0 0 3 g s G v S 0 s s¥2__ [seez _ [oiz
sz |r 0 b 0 z z z | 3 z 0 3 0 ¢ 982 [evee [slz
88 0 0 3 0 0 z 0 0 0 0o o 0 0 0 ek lssw vz
I 0 0 t 0 s v v Y |z 3 z } } Shol__ oewil [el2
ue___Jo 0 0 0 0 z 0 £ 0 £ 0 0 0 0 1S [|zoee _ [2iz
TS 0 z 0 0 £ 0 0 0 L 0 ¥ 0 0 sz [z088 __ [uiz
ork ¢ 0 1 £ P 0 0 0 0 0 3 € 0 0 T 1T ()
2|0 0 0 1 I 3 0 0 0 0 0 0 0 0 8oL [l00L [eeZ
10¢ } 0 0 0 3 0 z 0 0 0 0 g 0 ¥ 19 (9160 [ese
113 0 0 0 0 0 3 0 0 o__ o 0 0 0 0 £9 TTTS T3
Zoh |y 3 3 y S ¢ v 2 g S v g z 0 €68 5060 |09z
192___[¢ € 0 3 1 i € 3 0 € ! 3 0 t 182 ois0b [soe
zeb ¢ 0 0 ¢ b ¥ 0 3 0 0 0 ¢ 0 3 12z___|okls __ |vee
les 0 0 £ 0 0 2 0 0 0 0 0 0 0 i ce geoL [ee
[eoos o z z 0 0 v 0 0 0o 1z 0 g 0 0 1570 |ze008 _ |292
G 0 s g T 5 v S S g £ g 3 v Y69 [0l66Z |197
06 0 0 0 0 0 3 0 0 o |o 0 0 0 0 SEL [evez |09z
vt 0 0 z 0 0 z 0 0 0 0 0 0 0 0 10z [zwv0 _ |esZ
POd4v | vi# 0SD] £1# 9SO 21# 0S9] 11#9SO{ 01#0SD| 6#080| e#0sO| 1#059| o# SOl s#0so| w#OSO| e#0so| z¥0so| I#0SD| dan [(Hw) voy3|oN wefid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

APPENDIX C

PROJECT DATA USED IN REGRESSION ANALYSIS TO

DETERMINE MULTIPLIERS (n,)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

z - e © > z c & ¢ e € c € € |2v€ 1092 8

z © 0 z [[z i 0 [e & = i |s0€ (135 98

- ¢ & & > 0 © & & £ & & & z |¥e2 1629 S8

- (3 & © & i & & & & 3 I > [lety 881l v

>~ - c 0 ¢ 1 & c z & ¢ 0 > c |zse Z060L [c8

0 . . B [} B 0 I t c 0 c & lezs SShL 8

i - . [& 0 > (> € ¢ e [e 0 133 £009 8L

0 c . 5 € z e [£ z (3 > € B |92 [8L

. 3 z z . B (> & % [[[[} |22y) Sl

2 z . 0 - 1 [3 > c ¢ [I z coor [oress [l

» > - e & e € & c 3 > e > (= [oor [vioL zL

& > } z e B - & e & & & € & 651 |ocor 69

c c z c 3 3 ¢ ¢ & z > z > & 191 32 89

¢ e i z = 0 e > & & © & i b ¥0Z 1008)

0 e € L e z: Dl 44 £ 0 [o [} (:14) 0942 So

0 z 0 0 © z z 0) z 1 > 0 609 (T)

(2 - > » g 0 > (> z t & e > & [ser ¥SoL £9

0 >~ » A - - & c & € & € € € |988 9265 09

S - . > . . [e © e e z © (3 192 |ocor (5]

z c - 2 . 0 . 0 0 - &) & 3 90z [vo1Zt _ [es

e & » > [- e £ > 3 £ e = & 1903 19824 7]

> > » 0 0 g [¢ (> ¢t c c > e (3 |28y (7]

¢ . ¢ z 0 > ¢t & ¢ & B > & i [F433 3]

5 © . [& . ¢ ¢ e (> & & ¢ [(0] 9251 1]

> > c c > - c c c - © c & > []} 08

g > > 0 > lo & z z >~ t [) c > [T73 vigh o

z = e > (] |E4 z z . z 3 3 0 159 Zyion [sv

e 0 & . I z 0 Z 3 & & & 3 199 162¥ 33

I - & 0 (> z ¢ & 3 ¢ c c z z UL v Z¥

> - e [& z (> c z z z z & z l68 6z19 \¥

z - z T £ z (= 1 z I B c ¢ 4 [8955 o

0 = ¢t 0 0) \ - z 3 & 3 > [3 €00l logozt |i¢

] AR 2 ¢ ¢ e 0 (s b (4 & ¢ 0 ¢ : 098 6989 3

0150/019°C {2 c (3 0 I z ¢ 0 [4 ¢ [\ > . 19¢ 1559 et

YT > e z © le e e z ¢ & & > 3 095 000¢)

€8811Z0C (¢ z 0 b 0 e z 1 z 3 & 3 > 3 I3 0504 ic

T _|CELIELONY j& > e 0 b I 0 [0 z z 0 3 [z ot 00zvh |62

€LI508807 |€- > e » » le = & z £ © & & 0 901 109 [13

;| 22996000 €~ - D [- |63 e z 0 3 t z © z e yiS2 ¥

SOYeEIsZt [0 - 2 z - 0 0 0 3 0 & z > z [voll 3

Siye0lLLs [0 - 0 z - T 0 T 3) © 0 c 0 892 5869 [}

| 2220VEECE [© z z - 2 z 0 3 z © 3 © z sl 1 o

] _8@2“ ¢ z 0 2 z ¢ 0 ¢ 0 & 14 > ¢ ¥oe 0LvS i

682CL0E9E [¢ > z z: z ¢) ¢ 0 ¢ z c e 68 cizy b

1ZeeLzoTY [T > 0 ~ [4 0 0 Z 0 z z & z Sl yiE8) 3

;_|oseioi00€ |2 > € - z 0 z ? z e z & z ¥s2 (Y77} b

,_|99v08069°€ [E- - 0 [X 0 > 2 z z - z © & 02¢ 908y 3

B0COVOSY ¢ - t . b 0 z z 3 2 Z > i €81 1282]

28E890GL € B 3 z i I) z z z- i - z [T) 9

16990€89°€ [© ¢ - [0 z z z z z = [962 628t S

999626082 |6 c . ¢ b e & T e & 0 B & z 10} S08 3

_-883." e € . 0 e le 0 b [z 0 b e z 88 6952 z
{_{gan1007[wou3lo03[vil i{be 1Tbelogo] L 1TbwIosD [0ilbelogD)| elbeioan | elbelogo | belaso | elbeloso| slbeioss [vWibelaso [clbeloso|zbeloso] 1Tbe1osp| din |(uw) uoyal on bekid)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

BE11000ZC_|6O0SEINC |E = 0 0 z 0 1 z z 0 (]] €t 3 Z8) 159 Jzst
£899E0Z0T |11ZZL06ZY [0 i I \ 0 0 1 3 3 0 i 3 (] [113 ¥606L__ |6
COTOE00N'Z |E181SO0GE |0 z 0 0 z z 0 0 3 z - - & 3 z6Z co¥0 oy
81SToc8e’) [ezeszvesT [z- 3 3 B & > &) 0 0 0 0 3) les ove oF
TSOZIEOYT [9L62EVLLE [0 3) i e z 0 0 ! b 0 0 & ! £52 0818 [
CYSTOZS'Z |E50L19ESE [0 € 1 B & I & e € 0 0 0 > & [1EvE ey
S09ZTY00T | LOCEOZS0E |2 & 3 0 3 \ £ & © 1 0 b € € oy veyy y
DLVZVIOT _[ceLce0Le [C & 0 € z 0 z] z 0 0 0 z- z 259 0089 or
6859020 |€2E0LIVLY O = 0 2 & z . z (] 0 [z- z Z99 0oett _ |ec
1603418S°T |y0OBZLIOYLIE £ - ° € 0 0 0 14 0 0 0] 182 oors [:1%]
S002810°C__|S1¥ZLBLEY [Z = - 3 £ 0 0 b z 0 1 b z 0 WoL__ |oveeZ |ieb
95899501 T |S60EPBL6T (T >3 [- & ! 0 i 3 (] 0 0 z z €88 0256 SE!
BYSERESTZ [99969058°T |0 > 0 z 2 3 0 z 0 0] € z 773 1508 [
|eoisyzozz 6080568 E e lo z e z & - € 3 0 3 € - €81 ¥s8l (3
[LirvOVET |Li0i2800°E |b = lo 0 & 3 € - € - 0 3 € > (1} 190 3
010¥900YZ |¥9196060°¢€ |Z- = lo 2 & i 2 i ! 0 z & - 592 Ligy (3
200126Y07 |vo5icest’e [1- c 0 . £ 3 & z- - - (] L e & z mz 62
119068002 |VSVLIVEEE |6 & 0 & © 0 z- (] 0 - c 0 €2 e (11}
10819602C_|2008100ZE |6 = 0 I & B - 0 0 I 3 0 zol 1191 Iz
DLEOEIEYT |vO00LYLE & & > e & & & & € & b z 012 2 I
00/51¥ITT (82010089 [¢- > & 2 z z- & & z & € & & z [e ¥2
107155Y2T [ovBtyZEtt & - & 2 T z e & 3 g € & e {2 [0312 X
[XA - > - z 2 & & z & € & e Z 00 6y z
7 12 > - - I © c 3 z - & 0 € 3 898 50202 z

s |2 - - & € > e z- & € z € ~ 082 Z66¢ 02
v |0 - 2 & - 5 z & i - 968 c00lt [8it

A = - & £ - - - > & £ & & - m T3 M

s b c . © c 0 > = t t e - & > 8Ly] [

> e - & & 1 & £ & > & - & - [7%3 8008 9

) ! - 0 & e 3 e € & 0 - } [3 ZELC 3

& > _.f - e 3 e = e & - > & 3 S8 1 TS
vy |2 ¢ 0 3 € 0 3 l z z e 3 > 3 028 yiv9Z 10l
AL c & c e i & & e > & > - - iZ 9981 |60}
3 3 > z 0 3 0 0] z > Uz 098y 801
Y |t 0 - = [' z 3 z z] b 089 €0cSt_|Z0)
€ [e & - D & 1 €t & - & & c > & [> 143 900
€ e & - z- & g = & e & > £ & & 89} 605¥ 501
A - 0 } B z 3 (] z A c [[0 92¢ a8l Yol
y ¢ - - - (] z € & & & & Y 3 & €9¢ 1izel__ |eot
[- 0 I) & e = = & 0 © & 3 96601 |20}
> - - > & i & - e & & € & c €51 5992 00}

) - 3 - & > ! 3]] 0 > & z 919 (] 68

') - D~ E- 5 3 4 e z Z 0 0 e 2344 88

- . - » e D & & & & & & € - 62 ZreE 6

y |8 & - 3 z 3 } 1 z i & z & 3 0ze olve (08

AR 0 2 © g z: & = - c € > € & VEE 9260 S8

GZBCIOY'T |OLZISTINE |1- & 0 b . 3 1 0 } t & 0 733 verd £6
eY0LIZLT [06S100ELY |2 c & [3 (3 - T 0 z Z [} €0EL |28
C1¥2918°C_ |00281686¢€ |6 = & 0 > b 3 } 1 0 3 € 0 559 gic6 18
260196107 [Z690280L€ [1° z - & g € 1 z z 0 & i [0 Ly 603 08
GTBYSOVZT |SOELOBSOC |1+ i > z > & z lo z 2 ~ & z [i} [30d 68
81668.ET _[00G006Y8C |0 © - & e Z > e c & (> z e e 652 ¥10L 8
{ v €} 1211580 111Pe)os0 joi(Peloso| elbelosp] albelosn [1(be)os o] albelosD| slbelosD| vibeloso elfbelogo|zlwioss [1ejosd] _din _[{uw] wous{ oN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

_.Iasss__“ml«ss.ﬁﬁ 0 & 2 3 0 0 e z T & & = 7 £92 15 TR 272
WYOIITZTT |10E880LEE |2 & z - & 5 & 3 z & & v & 0 191 Sv0Z 173
Z055¥100T_|80810S5SC |6 & - 0 0 e & z & ¢ & & 0 So¥ C
DLC8CZELL |OVTOIEOZE |E 3 e & & & z & & e & & > z =] ££0 les
1E12CV00°C_|¥OS0ZLS0E [C & - z > 0 3 ' & - 0 I & & T} vl lot
o0YCe8L’) (62087000 [e 1 z & 0 3 i e - 0 g > & 9 0L 01z
100608Y8L |00C801E |o t & g t & z e 0 > 3 > & 0 68 v 183
VOroBec0T [VOOVZLLE 6 > » 3 0 z z e z & i - & 1 %Y 7289 Y3
10512v2L)_|0L1088Y8 T & ¢ B T & 0 c I & b 0 - 6 &] 600 142
00YOCOVE T [CL0LIVOE [C- t e ¢ 3 z g 5 3 > e & 0 0 [37] oy 0N
20eBIEYLL |C2CEI0MT |6 ¢ 2 > & z [z z (2 2 & & 3 (] €69 le0z
1661065 [IVLIZOLE & 5 - & z i 0 z z I 3 2 & z (3 6500 |00z
2SVOrZYOT |0000516E |1 & - & & 0 z > z & = T G 0 6ty e |02
CEY0E050T [Z5CE8rOTE |1 > - [[¢ 2z |2 z e [z [(] ¥t €09 3
70L10¥OTT _|¥O00VIONE |- & - = > g z = z & & T = P ol 0252 _3«“
TLIE2800' |9900TL61°C |1- & T 5 & - z e z > & T & b’ v ol51___ [e0T
GOVEBLSCT |9/5C8195°C [1- & c T > : > [e & 5 t (2 © & (173 e (20
026YS0VZ T |8REVESISE & s > & (] z e 0 & & & 0 > 0 v olZe___ JooT
YZLIZORET |SehiTonN’ e . (2 & 0 - - z > & - e 3 (23 o262 |66}
790ZIC0PZ_|ZL6190VSE [0 = 2 © & i z & 3 = - - & - 13 FAT 2)
SOLZICIOL |L22LI0LPLTS 0] 0 > [0 & & 0 :) = - 8 6058 |06t
21000000 [100S0MYS 0 3 0 z- 0 £ 2 e 0 - D € P~ 20 00S€ [sel
86/5YYD0T_|CBCZEEO0T |4- g) 0 > z t {0 2 - - 0 & ; 0 00 |v6t
OSYSLYEY'Z |20055000°C |1- 0 s 0 > 2 1 0 z 0 - 0 & 3 Zit oc0L |28l
166CZ90V'T_|OVVRe96Z ¢ [1- - 0 b e = 1 0 3 T - 0 & 3 992 1960 (16}
000TZ168°_{18LVS0LY'E [0 0 0 0 - - z z 0 i 0 & . 06 9662 08}
£069C000T [9L100SVSE |1 0 2 e z 0] . I 0 &] 27} yisC |68l
1028W¥8'L_|YoL0sYLV'E |0 3 - & © 0 3 - 3 - & 09 087 _8, ,
69IZYC80T_[SORLEOBYT [- - - 5 i t z - z - [[} oeic_ lies
1501915ZT |90880VOLC |6 - - - > - z [z 0 & - - 185 1105 joet
QEOCLL0P'T (100CBSLY |© J - - il D 3 4 0 0 0 € 4 10€ 113 |_.3-
VECOO0LI0T_|LT2VSI0eT |6 e - - & : = 7 > & 3 2 & & YOl ARG
Z1CO80LLT_[Q06L9050'Y |1 = 0 z = z z I z z & 0 = 0 (1] SEzhL__ (108
820110L0T [LiISIZRl'Y i > = & & b & 3 & & i & 3 699 1125 ___|08
16611908 _|00BZZ166T |0 & [0 0 z & 3] > 0 3 & z o9 0008 |62
628065y _|v.69602LC |©- z i z > & (= z y & > = e z 992 0925 (62
BOZSEYOL | _8,85." > e > & & t & 5 3 & & & e 3 ol 614 m
9070eY0L'T |VOTBLLCLT (& T » & & e 3 > z & & & ¢ & orl (e [
LIBLYZYP'T |EV00086S°C (O B~ z: 5 e~ S . i 4 Und ez i £ 14 LT L¥6€ 171}
£0079000°Z |¥OBLZSEZY [1° - 1° I - 0 1] P I P & 0 90v cezel__ [1it
1681065 T |68.95900°Y z- 0 e (4 4 (4 (] t4 £ t4 6EE 66104 lozs
1155962 6YI0G108°C [1- - - % = 1 1 z 0 v 0 & t c6l €056 81
SC0L691ET_[eseereilLt [0 3 - 0 e 3 | € [z [[+] [10T 9C6S 991
109522627 [826VZEZOE V- > > z & 5 (2 o z z & z z 0 061 00y [s91
160812002 _:8:8._ e & e z & & z 3 3 & S & &] Zh ciey _ [vor
061 19C0C_{06600828°C |2 t 0 & & 0 0 0 z 0 - 3 &] 33 6609|291
D6OVG0.0T |VS8SZLECE [0 e i z T 0 & ' & 0 0 0 T 3 8it Y1z [est
GOISLYITT [1VE0RIT8T & > 2 z & &] (] 3 & 5 3 = z o8l I _8,
YBLZLIOET |I0VEYZ0RTE [T > D t & 1 o 1 z & 2 2 0 0 06z Yooy |5t
YOLIOZOE T [1GITVSRETE] 0 [- [) z & 0 & 1 1 173 T ACT
1TV |88961908¢C (2 3 5 1- - z 3 Z z g & i 3 vy 0508 [s91
ZZICEYOO'T (8100001 [i- . I & 2 - 3 - ? I e 3 ¢ 3 ¥ee IS CT
n 1[vilee)580 [cilPe1580 | ZiTbe1o80] t iTpeloso]oilbel3s | ellbs)oss elbeioso | [(be) 586 | olbeoso] slpe)os | vbe)oso | elbeloso [zlbe)asD) ilpe) din _|{uuw poy3|“oN peloid)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

m—

2928129C'T [195452Y0°¢€ {€

= © 3 = € © I e t c > © © [Z3 662
\OYOREZ T | 18902200 (6~ > > > c > > e ¢ c (> & & [el 162
IZZLIS91°T |160BVELYE e > ¢ c & = & | 3 e (> e & © 699 £62
0Z79162v'T |6EIEVIZE [> > > © ¢ (= |e 3 ~ > e & > 602 z6e
GZBYSOVT T |SSOYIESET (& > > 3 > € > Ie & e c > > - vii 062
12001€L0T |8110/0L1T |& - & > e > c e t c c > c > [107
1EVEZ010°C |00568SL0°C |6 ¢ & ¢ ¢ ¢ & le & > [> ¢ et €Y1 513
G086RS6S T [9068110L¢€ |i- [> i B H 4 It) 0 & 3 ¢ £ 191 13
YEEE0L10Z_[19208201°C [€- ¢ > c > > > e & & © & i 0 0L e
BYZOCESET_|COB0000K'E |1- > © 0 ¢ z & e c & (> z ¢ z i 162
€00918Y.')_|CY2B9.L6EC |E- & i > € 0 & & - 3 (> (3 > (95 08z
[cezeic08't [12606820'C 10 < [€ e z [e e © > e (3 [8 |8lz
GLOVDIZT _|6Y6Z8a9E |C- > z > z) c [> & 3 B = - > 681 [Tt
SYOvOZSLT (81126181 |2 0 0 0 z I e |- z (> i ! 0 3] 7
6090160€T_|6026.00€ ¢ > & z € > 0 [3 z | Y z & z 124 9l
6YZeE08Y' T [806CY0L6'C |1 - z- c i . i T 3 - > 0 > 0 082 Sl
POBEEOSLT |1LLYEBYOC [> B ¢ ¢ . € € & > ¢ [e [31} 713
62911610°C_[goLvZivTY [4- - ~ 0 > 2 1 Y . i i i z 2 (]! 313
¥G0BYELLT |OCIOSMSTE |6 - > ¢ [. & 0 ¢ 0 (3 - > & 118 [2%3
OYBEYZEEZ [1EVEBMLE [C c . & 3 0 c © e z © L © & SIZ Wz
06YZ808G'T [296.8008°C |2 e » € : e B e (3 e € 3 = 3 188 892
SZ6YEI68T |SL10B1E0Y i - 1 3 0 § } [[4 i [4 i = 66 992
Zc00/0vr'T_|66YZI0P20Y [0 0 >~ S - z 0 0 > 0 z B c 0 13 33
60820618°1 [81906ZI1ZC € > 0 c e B & > & & > > ¢ z] lee2
1969CLY0°T_|PI0090LY'Y > 3 z 3 z 3 (3 z 3 0 3 0 l 89 |02
LICEE0EL'T [S208L000'E |6 ¢ - c (> B t e e > ¢ > [& SE1 losz
626008YS°Z_[62006100'F (O > b e - 2z e e i - € > € e 3 [
90CIOLT [1pS12000°C [& > b > > i ¢ [e > > e e c > [68T
009616067 [CO12020CY [0 > - 0 ¢ S i 18- z > ¢ & ¢ z 102 ¥52
ZBOVYOEZT |IESTLIVI0NT |6 ~ 1 > t i & I [c > e & = [13
12805014°T |6909L200°C €~ ¢ - e > > ¢ e ¢ ¢ > - t 621 T
¥0/89000T [0C690ITC_ [& > D ¢ & 1- & = B (3 > & t t [T 152
16981200T |CISLLOELE (€) - 4 N [b lo {4 € e 0 0 £ [£4]3 1082
vECYO610°'L |Z000082C |6 ¢ 2 z s ¢ & Ie > e ¢ z > & 9 le
ZTLEOZI0T |vEveezst o - - z - < 0 I3 3 - e e > > o0l |8
YZLVZIBD'L |105LSLIRT [C > - € 3 [3 e = t 3 > 0 > & o o,
OTLISOZYT |CSZE8L0C |4~ >~ - z > 0 . Is- 0 b > 1 - & 192 S¥
€0.0/C08°) [¥¥S186¥0'Y [C- > . 3 . i e Ie- [e e > > e 28 [
QIOVRIZT [1yeeesest |& c - > - B © > - c c c > t 691 92
6C00.Z8Y T _|Z0IZVIERT |2 & 2 z - > i z 7 I T 0 t 2z e o
102891207 _|ZvE6LO0VE € > > > - 1 & 0 3 z z ' & 3 17 12
L00Y8L6E'T |8I2Y8SSE |2 & 4 0 [z 0 0 z 0 0 [& I 052 33
CrLO0V0L T |8000VENE'E |0 [[& 0 ¢ 0 3 [3 £ [[& z €1 162
809SYEYT_ [16CYITZE Y |1- {3 0 > = ¢ 0] ¢ & ! > (> B (783 3
CLZLILT_ [voeiveiLe [i- z > > > ! c [3 & I F3 > z €l (133
OYeShZEET |SEZRI0LE |1 0 > [0 > z - z & > [3 & z SIT ez
6992.058'C |¥O5060C8°Y |2 z t - t ' > - z z & ¢ z 8l 53
8895YEYT | 180L2009°C [0 0 - c > z 0 - B 0 b © z (713 (323
ZLEOT [SZ8ELIEOTE |1 > . & D [} [) 1 0 [3 eV lizz
160VEO20T |PILICO6SE [b > - £ I 0 0 z) 0 > 1 oy 3
126101107 [£2019106°C [E- ¢ (3 t 0 [10 z & e 4 € 4 852 (243
ZZISEVE9T |26060C |2 - > ¢ 0 0 c Je 3 > > [> z 3 573

d4n’907 1 [vilBeoso|cilbeloso] zilbelosn] 111380 0ilbeloso | elbeloso| elbeloso | Lbeloss] slbeloso | slbelos | ribeoss | clbeloso | zlbe)osD | 1Tbe3s0] _ddn ‘ON

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

{44 < 0 0 [z 0 e [} 0] 16€ 0€601
T z o 0 0 T 3 1 1 0 ' oltk__ [evhiz
11{Pe1050]01beia50] eleloso | elbeidsol(Peloso| olbeIose| cTelso Wisel5s0 [elhelasH [Zibw)osD | 1PeIase] ddn |(uli) ueua["

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.r

112

£L07¥0'L S602020¥0'0 | L¥610€800°0- |S692029v0'0 |L¥610£800'0- 2258191410 |0628002LE L OLYEEeEL0'0 | ¥240B6RLO'0 ri(pe}oso
L¥EZL'L 80L222080'0 |26/6¥€£020°0 |801221080'0 |29/G¥€020'0 [1628¥L100°0 [S6228100E°C ¥1202€610'0 |ec¥185050°0 c1{pe)0so
141020'L £12026¥¥0'0 [SYELEP2Z0'0- |€12928¥¥0'0 |BYELEYZ20'0- [¥EFOOEZLS 0 [SO2E5PSO°0 1082602L0'0 [€E¥¥BL110'0 Z\(ipe)oso
¥.,0266'0 prP2TYe0'0 [208060€0°0- [¥¥2Z¥9820'0 [208960£0'0- [60L02.2€6'0 [£602€5¥80'0- $89950510'0 1642221000 11(fpe)osol
S0ZYE0') LEYYSOLYO'0 [660VYBLO'0- |LE¥YSOLYO'D [660¥YBL0°0- [DESBYYYSE'0 [8EL1691.8°0 SL9S.910'0 |1Z/909¥)0°0 04(/pe)oso
200421t 66855¥6L0'0 [092650520'0 [66055¥6L0°0 |99£650520°0 [126102000'0 [ovELZe88L'E 12.162€10'0 [8208652250°0 a(lpe}oso
¥026¥0°L 9S9CYI0C0'0 |C0OLSEVL0°0- |8SOEPI9S0'0 [COBLSEXLO'0- [000S98EKZ0 [vOSYPLEEDL'L 6826298210'0 [826268020°0 glipe)oso
161000't 0800002€0'0 [22¥6261£0°0- |9900902c0'0 [L2¥6261£0°0- [c¥£0.2066°0 [6¥¥S¥O¥00'0 S00€22910'0 |S0-3€6209'0 L(Ipe}oso
1108696°0 104120600'0 [9Z68S¥O¥¥0'0- |204120600°0 [8285¥O¥P0'0- |COOYOOEEL'0 |8€262000€"L" $00819€10'0 |100282210'0- _ollpe)oso
ocorY8’0 2089¥9010°'0 [920811000°0- |2069¥9010°0 [820811000°0- [¥8¥ILSGEOL°0 |¥ZL6¥L0LE |- £650¥8L10'0 |808S9EL¥20°0- g(ipe}oso
LBLL0'L G620¥ZLP0'0 [8128101€0°0- |S628¥ZLY0'0 (8128101600 [82001#082°0 |2520L1642°0 $66126810'0 |88L¥11500'0 ipe)oso
0644808 $GZCYEOr0'0 [21CBL1¥10°0- |¥SZSPEOPO'O [21S6LLYLO'0- [1EOYOSHEZ'0 |£SEBLELSO'L 19262£510°'0 [898211910°0 ellpe)oso
$¥0100°t ZL10600¥#0°0 [221£906€0°0- [2210850¥0'0 |221€96C0°0- [112922286°0 [90220£220°0 $690€£020'0 [SZSESY000'0 Zlipe)oso
Z196¥8'0 OYOYOE000'0 [062PE0LG0°0- |9¥O¥OE000'0 [962¥€0150°0- [SOSOYYOZI'0 |9066Z8YES)" 1961SSYL0'0 [SZBYEEZZ0'0- 1(pe)oso
896Y80559'L [2SS610¥8E'L |8G6YBOCSH'L [255610¥8E'L [SS-3€0800'Y (28402122 8rL2.800'0 |£62281029'L 1dedseuy|
7] %000'G6 1000N | %000°66 JoMOT | %C6 16d0N) | %66 om0 onfeA-d oIS} Jau3 piepugls $)UeLY80D
1106€468'6L 602 jeioL
0LL$EELL0'0 ocro1080's |sel lenpisoM|
L0-32L¥6L°L [BLLYLYZLY'Y [LLYOEZIPED zsLszeLLLY _|¥) uojssasloy
o eousoylubls 4 SW $s »
VAONY
(1]%4 SUOIIBAISSGO
£2060842'0 lJou3 piepuels
120¥50081°0 eenbg Y peisnipy
6120260¥2'0 esenbg Y
90298v06¥°0 Y eidnin
S9)IS/18IS uojssasbey)
{LNdLNO AUVWINS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

APPENDIX D

DATA FOR 91 PROJECTS USED TO TEST

PROPOSED APPROACH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

58 [ero0isec0 To o 3 2 o 0 Lﬁn. 3 1 i5i__ [eiee [eai
81T [1902¥1910°0) 10 : 0 2 3 z (T3] T3 (1211} }
(2] 1LCTRL0SY - 3 - - . 2 ¢ 3 2 I B sl ol 8062 (291
01 [1eo1s810¢ - 3 3 - 3 - 2 - - s - ¢ c 902 [¢ oL
165 [0617800Y0' - 3 z - - - - - - 33 i 1] 08¢ 0018 |v2
00 LOVITOSR . I3 Iz - > - - - - - - 3 0 o il s (u
S0 |99008G1LC 3 3 - - = - - z [113 323 050 [eol
3 80812150 [5 . T > - g - . Ie 8l ozz 0002 |00t
il PRICSEINO |6 (3 - (3 . 3 lo 3 - 18- 99¢ 112 TTes [o9)
0iz__[svoesivo [0 - 0 - - e (] z - (3 iy 008 _83 Jist
08} 16L5TroYY . - ? : .. s [] - Ie (113 34 §tie 091
€16 [Yorroveer 3 - o - = 0 0 z - 3 €80 Yol ZeCZ_ oSt
ot [oviiLicyey . - .] - W W. - . . [ost oy _5.: 181
] 12200182¢ (4 3 * T 3 [[* . (3 1 [} {11} 0l 08}
0r _ [S900I5IKS 0 . - . 3 10] [0 s [[tit sug [y
{1 12000881 L']] - - 3 z 0l] 7818 |oF
69) |S0Z108¢CH" e . . . (3 Is- T o8 ciev iy
ZLL |962Y19000° e - I3 -) z Iz [73 000Z___ |6
[S260C0COY 3 e 0 _.m > - . 0 I3 0 00z___ [o02 FZIT I (3
€8 190YBLLTY = It 3 3 > - - > . - - 3 18- T sti L [
100 |¥5082996'0 > Ie . I3 = . > e 3 3 - - _m ¢t (33 8¢ s000 |21
08 SL1CO0TEL = (3 (] 3 . - - 3 - - (3 £ I el [Cc IR
5t 15T00080F" = 1z - 3 - - - - 2 . - - z 1 3 00 ts0l |2l
00T [1015540i00 [0 T 0 lo 2 >~ 0 - - 0 (3 (B 192 T3 el (ol
015 |ZZeute0n90 [0 3 _m 3 . Z ¢ 3 _.or 3] o6l nee e
e SLT20¥098°0 . (3 (3 - . . » - 3 . ¢ [[Itk 888 (TS (1]
0s8 [o991Z21091 . ﬁ.(e - - - - - 0 . - ¢ I 208 c00) 600z 0@
0T |osTaIciist [t 3 . e 3 3 c- - (3 - - I3 I3 Tl [373 [
0IC [ce/80veZe0 [T e . Ie- > _h z 2 - . = - o5y osy P T T
s 1600550050 |1 m . _m . . ¢ = > - - 0 $28 e |00 o2
00C (0920592680 [¢- (3 - . _« (3 - - - - t . ue [808 |i2
168 [SOT0SYeaLT Hv (3 W It 3 H _m 3 . [3 \osb Jecor ivesio ol
10L 01081608 [Ie - o - 0 [3 P . > (3 (3] ozt 1568 9
o0 965818150 [T - - . = D I3 - - 3 3 - 3 _a. 901 [T
T [¥e1081560" 3 3 3 - t - - - - - t I3 zil 2y (T T
o5 SECIOCHEY - - - - - - - - - - > - t & |ie [KT |9
m CCCIothZY - - - - - - - > 3 - - - = - |81t GTY oS |
60 LISTH8IY 2 (3 . . . - 3 - - - - - . - M %01 oelt |28
zel _ [81598120'0 3 - - » - 3 - - - - - n - i 81 wor e
1Ly 1i01066990 Hw - - 3 32 0 3 - 3 0 . (2 1 S R [
(O TS D 3 . - 0 -] 3 3 a = . 0zt §5¢ 0208 [o¥
61§ [102ZeR2IE’ |_v« 3 . 3 [. ¢ . . . g - £ 100] yuss |y
0Ll [¥9009600%" . > . . 2 e 2 - D - ¢0Z 0% ofey et
[LCYO0000¥" _n. 3 . z - - 3 3 - - - 2 - [102 028 ot
(73 208YZTYOT’ e . . o 8. \—e. - .. o re = 802 e 0598 9¢
3 19Y0EL815' T - 3 - . - Is- - - 3 - . = .] §L [T3 [
162 [PCCIte00s’ T 3 - 23 Ie . g 3 > 3 . 102 13 00ls [oe
(] ceciocKYo |¢ I3 - - > 3 - - 3 - . _m. 3 *W 2 ool oz
1865____[ycec00is0 0 lo 0 3 0 i - i - 2 e _w 3 ey leerii jit
v siezie260 (¢ I¢ (3 3 . . = - . le - s (3) M [T TS [
(1] 132001989 0 Is: (4 0 " 0 > 0 - T L 0 " (& 1} (114 (4
(T Ie 0 0 2 0 - T . z - - I Tn GTY (¥
008 .3-!-3'*@ Is (3) 3 0 3 - - lo 5 - & it ost
S1T__|zzeesviso |o 3 0 0 Jo 0 Jz° 5 > 0 Sy Iy

08 YiVeoeYes0 | £ T 2 i3 z Iz - - z 201

©ll_ |celoooety 3 e (3 lo T - 1z = 0 - [152

[ozosZRioyo [0 T z- z 0 0 lo *P - - 3 [*.I.. (1)

vl [0110000050 [i- 3 (3 3 (] i 3 T » 2 3 3 e 13

Syl |acsiotoseo [¢ 3 [3 T - It 1 2 [s - - 0 |3 [t:3

6L Lisisiesso [z 3 2 0 3 0 3 [[- [3 [we |t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

€0 [Cceioonyo o e 3 %ﬂ - %ﬂ - 3 3 (3 - - T 3 962
N G - > t > (3 - 3 3 [- - 3 = 082
CTEE G TAY 3 3 - t . 3 - » 3 - 3 . I3 - (3
0C1 __ [COCIO0YZY _n. t . 3 3 3 3 3 - - > 3 e 3 (T3
vaz _ [ceelochy 5 3 3 Ie (3 3 < 3 - - » 3 I3 - 182
T3 [CCEI0SHZY0 o = - Ie - t 3 = - 3 - - Ie- 3 [
1 [ceciocezyo_ (¢ - - I > 3 T - - - 3 - 3 - ooz
'8 SCCIOLYZYO_ jo- - 3 ¢ - 3 - - - © - 3 - yzy__[081 00l |6z
€21 (84001055 (3 3 - 3 3 - - . 3 3 - Iz g 8L 33 yotl ooz
Tl |viiGT28080 [0 I3 - 0 . e - - - - Io o _m 3 ob| o2 I3 (11
61 ___|Zo8veLLzee _ [e- I3 . z - 0 3 - - . (3 - © > [3 691 190y [esz
3 BCIZVIEcE0 o © 3 3 3 . . . - (3 (3 - e 3 Ty 3] [TV T3
821 (9462998000 [0 ¢ 3] - - - - I3 - 81 z olls [vez
T} _ [zi0ci10080 [o- . 0 T > 3 e - . 3 Ie = oool [s62t [zeoot |2e2
vl [¥0820950 - - . 3 - - - - 3 - > > I3 = 17 02 Zive_ |est
M I9160CTLY 3 - . 3 . - - - - - > Ie- -]] oISt
58 oLOINIesE0 [T 3 . & . . z . 2 - g~ = & 3 2l ahl eyze |05z
o¥ B29200816 s 3 3 = 3 - 3 3 - > I 3 3] 19 T T3
62 ___|65¥00005¥0 [0 © - 0 - 2 Is - o o »28 Oy ofil__Jore
3 VRRLTIBY0 It _a.. 3 0 2 () *wl - - lo 10 |52] CT
\WE __[00160089°0___ |3 I3 0 0 - o | . - (3 3 13 T 573
68 12608028Y'0__ |0 e . (3 2 [W D (] 0 IR . 061 202 e |iee
081 |ovevzie00 3 D - 3 D] D - 0 3] W . 52 192 T (3
1T [CICOLOMELT 0 . is 0 b+« _m . . o ¢ o8 jiot st s
¥9L |28008560 R - z I D [} D (] I0 0 |e (] 682 508 Wit sz
1y sotizzZeY0 2- 12 Ie: 3 I I3 z ~ 3 - 0 It 08 ol t0sZ el

oS 16686250 |0 3 = I 0 0] . . [- > 0 [] tol ol wer |4

062 [00000%5i0 [t It . 0 0 i] 3 [0 (133 3 iee |2
(=] 9942600050 [1° © (3 e 3 o z . - 3 - &] 11} o togz g0z
00 0I0YRREEY0_ |i° (3 2 (3 3 i z 3 - T. - T - (3] 501 tzz 1oz
99 ©61108505°0__ |0 © T & > i (3 - e (3 3 Ie . 801 1 000 [est

T :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

VITA

William Alexander Eldred is a Principal Engineer with PRC Inc., an
information management and technical services firm, at the company’s
Virginia Beach, Virginia, location. He is a former Engineering Duty
Officer in the U. S. Navy. Since completing a twenty year Navy career in
1982, he has pursued a career as a technical manager in the private
sector. He is a licensed Professional Engineer in the Commonwealth of
Virginia.

His education includes a Bachelor of Science degree from the U. S.
Naval Academy (June, 1962), a Master of Science degree in Management
from the Sloan School of Management at the Massachusetts Institute of
Technology (June, 1972), the degree of Ocean Engineer from the
Massachusetts Institute of Technology (June, 1972), and the Doctor of
Philosophy degree in Engineering Management from Old Dominion
University in Norfolk, Virginia (December, 1998). He was elected to
membership in Tau Beta Pi, Massachusetts Beta Chapter, in 1972.

William Alexander Eldred was born on May 1, 1939, in Glasgow,
Kentucky. He currently resides in Virginia Beach, Virginia, with his wife
Judith. They have three adult children, John and Marshall, both of
whom live in Richmond, Virginia, and Alina, who is a graduate student at

The American University in Washington, DC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (QA—3)
|

I3

1653 East Main Street
- Rochester, NY 14609 USA

iﬂm
= 1S
il E73
=

.4
150mm
é

125

© ‘983, Applied Image. Inc., Al Rights Reserved

APPLIED = IMAGE . Inc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 1998

	An Alternative Method for Determining Adjusted Function Points as the Basis for Software Cost Estimating
	William Alexander Eldred
	Recommended Citation

	tmp.1552581680.pdf.bRwrn

